Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T23:29:05.740Z Has data issue: false hasContentIssue false

Power series methods and almost sure convergence

Published online by Cambridge University Press:  24 October 2008

Rüdiger Kiesel
Affiliation:
University of Ulm, Germany

Extract

Let (Ω, Σ, P) be a probability space and suppose that all random variables are defined on this space.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bingham, N. H.. On Tauberian theorems in probability theory. Nieuw Arch. Wisk. (4) 3 (1985), 143149.Google Scholar
[2]Bingham, N. H. and Tenenbaum, G.. Riesz and Valiron means and fractional moments. Math. Proc. Cambridge Philos. Soc. 99 (1986), 143149.CrossRefGoogle Scholar
[3]Bingham, N. H. and Goldie, C. M.. On one-sided Tauberian conditions. Analysis 3 (1983), 159188.CrossRefGoogle Scholar
[4]Bingham, N. H. and Goldie, C. M.. Riesz means and self-neglecting functions. Math. Z. 199 (1988), 443454.CrossRefGoogle Scholar
[5]Bingham, N. H. and Maejima, M.. Summability methods and almost-sure convergence. Z. Wahrsch. Verw. Gebiete 68 (1985), 383392.CrossRefGoogle Scholar
[6]Bingham, N. H., Goldie, C. M. and Teugels, J. L.. Regular Variation (Cambridge University Press, 1987).CrossRefGoogle Scholar
[7]Bobwein, D. and Kratz, W.. On relations between weighted mean and power series methods of summability. J. Math. Anal. Appl. 139 (1989), 178186.Google Scholar
[8]Chow, Y. S.. Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1 (1973), 207220.Google Scholar
[9]Chow, Y. S. and Teicher, H.. Probability Theory (Springer-Verlag, 1988).CrossRefGoogle Scholar
[10]Gaier, D.. Gap Theorems for Logarithmic Summability. Analysis 1 (1981), 924.CrossRefGoogle Scholar
[11]Gänssler, P. and Stute, W.. Wahrscheinlichkeitstheorie (Springer-Verlag, 1977).CrossRefGoogle Scholar
[12]Hardy, G. H.. Properties of logarithmico-exponential functions. Proc. London Math. Soc. (2) 10 (1911), 5490.Google Scholar
[13]Hardy, G. H.. Divergent Series (Oxford Press, 1949).Google Scholar
[14]Hardy, G. H. and Riesz, M.. The General Theory of Dirichlet Series (Cambridge University Press, 1952).Google Scholar
[15]Ishiguro, K.. A Tauberian theorem for (J, pn) summability. Proc. Japan Acad. Ser. A. Math. Sci. 40 (1964), 807812.CrossRefGoogle Scholar
[16]Jakimovski, A. and Tietz, H.. Regularly varying functions and power series methods. J. Math. Anal. Appl. 73 (1980), 6584CrossRefGoogle Scholar
Jakimovski, A. and Tietz, H.. Errata. J. Math. Anal. Appl. 95 (1983), 597598.CrossRefGoogle Scholar
[17]Kiesel, R.. Taubersätze und Starke Gesetze für Potenzreihenverfahren. Dissertation, Universitsät Ulm (1990).Google Scholar
[18]Kiesel, R. and Stadtmüller, U.. Tauberian theorems for general power series methods. Math. Proc. Cambridge Philos. Soc. 110 (1991), 483490.CrossRefGoogle Scholar
[19]Kratz, W. and Stadtmullee, U.. Tauberian Theorems for (Jp)-Summability. J. Math. Anal. Appl. 139 (1989), 362371.CrossRefGoogle Scholar
[20]Kratz, W. and Stadtmüller, U.. Tauberian Theorems for general (Jp)-methods and a characterization of dominated variation. J. London Math. Soc. (2) 39 (1989), 145159.CrossRefGoogle Scholar
[21]Kratz, W. and Stadtmuxler, U.. O-Tauberian Theorems for (Jp)-methods with rapidly increasing weights. J. London Math. Soc. (2) 41 (1990), 489502.CrossRefGoogle Scholar
[22]Kratz, W. and Stadtmüller, U.. Tauberian Theorems for Borel-type methods of summability. Arch. Math. (Basel) 55 (1990), 465474.CrossRefGoogle Scholar
[23]Lai, T. L.. Summability methods for independent identically distributed random variables. Proc. Amer. Math. Soc. 45 (1974), 253261.Google Scholar
[24]Peyerimhoff, A.. Lectures on Summability. Lecture Notes in Math. vol. 107 (Springer-Verlag, 1969).CrossRefGoogle Scholar
[25]Seneta, E.. Regularly Varying Functions. Lecture Notes in Math. vol. 508 (Springer-Verlag, 1976).CrossRefGoogle Scholar
[26]Tenenbaum, G.. Sur le procédé de sommation de Borel et la répartition du nombre des facteurs premiers des entiers. Enseign. Math. 26 (1980), 225245.Google Scholar
[27]Zeller, K. and Beekmann, W.. Theorie der Limitierungsverfahren (Springer-Verlag, 1970).CrossRefGoogle Scholar