Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T11:40:01.923Z Has data issue: false hasContentIssue false

Polynomials which are near to k-th powers

Published online by Cambridge University Press:  24 October 2008

K. R. Matthews
Affiliation:
Trinity College, Cambridge

Extract

1. Let f(x) be a polynomial of degree n ≥ 2 with integral coefficients, the highest coefficient being positive. It is well known that if f(x) is an exact k-th power for all sufficiently large integers x, where k ≥ 2, then f(x) = g(x)k identically, where g(x) is another polynomial with integral coefficients. (See Pólya and Szegö (4), section 8, problems 114, 190; also Davenport, Lewis and Schinzel(1), where other references are given.) The main purpose of this note is to prove that if we suppose only that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Davenport, H., Lewis, D. J. and Schinzel, A.Polynomials of certain special types. Acta Arith. 9 (1964), 107116.CrossRefGoogle Scholar
(2)Dörge, K.Zum Hilbertschen Irreduzibilitätssatz. Math. Ann. 95 (1926), 8497.CrossRefGoogle Scholar
(3)Dörge, K.Einfacher Beweis des Hilbertschen Irreduzibilitätssatzes. Math. Ann. 96 (1927), 176182.CrossRefGoogle Scholar
(4)Pólya, G. and Szegö, G.Aufgaben und Lehrsätze aus der Analysis, vol. ii (Berlin, 1925).Google Scholar
(5)Skolem, Th.Diophantische Gleichungen (Ergebnisse der Math, v, 4; Berlin, 1938).Google Scholar
(6)Weyl, H.Ueber die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313352.CrossRefGoogle Scholar