Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T14:41:26.234Z Has data issue: false hasContentIssue false

Perfect powers with few binary digits and related Diophantine problems, II

Published online by Cambridge University Press:  16 August 2012

MICHAEL A. BENNETT
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, B.C. Canada V6T 1Z6. e-mail: [email protected]
YANN BUGEAUD
Affiliation:
Mathématiques, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg, France. e-mail: [email protected], [email protected]
MAURICE MIGNOTTE
Affiliation:
Mathématiques, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg, France. e-mail: [email protected], [email protected]

Abstract

We prove that if q ≥ 5 is an integer, then every qth power of an integer contains at least 5 nonzero digits in its binary expansion. This is a particular instance of one of a collection of rather more general results, whose proofs follow from a combination of refined lower bounds for linear forms in Archimedean and non-Archimedean logarithms with various local arguments.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bauer, M. and Bennett, M.Application of the hypergeometric method to the generalized Ramanujan–Nagell equation. Ramanujan J. 6 (2002), 209270.CrossRefGoogle Scholar
[2]Bennett, M.Effective measures of irrationality for certain algebraic numbers. J. Austral. Math. Soc. Ser. A 62 (1997), no. 3, 329344.CrossRefGoogle Scholar
[3]Bennett, M. A., Bugeaud, Y. and Mignotte, M. Perfect powers with few binary digits and related Diophantine problems. Annali della Scuola Normale Superiore di Pisa, to appear.Google Scholar
[4]Beukers, F.On the generalized Ramanujan–Nagell equation. I. Acta Arith. 38 (1980/81), 389410.CrossRefGoogle Scholar
[5]Bugeaud, Y.Linear forms in p-adic logarithms and the Diophantine equation (xn − 1)/(x − 1) = yq. Math. Proc. Camb. Phil. Soc. 127 (1999), 373381.CrossRefGoogle Scholar
[6]Corvaja, P. and Zannier, U.On the Diophantine equation f(am, y) = bn. Acta Arith. 94 (2000), 2540.CrossRefGoogle Scholar
[7]Corvaja, P. and Zannier, U. Finiteness of odd perfect powers with four nonzero binary digits. Ann. Inst. Fourier to appear.Google Scholar
[8]Laurent, M.Linear forms in two logarithms and interpolation determinants. II. Acta Arith. 133 (2008), 325348.CrossRefGoogle Scholar
[9]Laurent, M., Mignotte, M. and Nesterenko, Y.Formes linéaires en deux logarithmes et déterminants d'interpolation. J. Number Theory 55 (1995), 285321.CrossRefGoogle Scholar
[10]Leitner, D. J.Two exponential Diophantine equations. J. Théor. Nombres Bordeaux 23 (2011), 479487.CrossRefGoogle Scholar
[11]Luca, F.The Diophantine equation x 2 = pa ± pb + 1. Acta Arith. 112 (2004), 87101.CrossRefGoogle Scholar
[12]Scott, R. Elementary treatment of pa ± pb + 1 = x 2. Online website address: http://www41.homepage.villanova.edu/robert.styer/ReeseScott/index.htmGoogle Scholar
[13]Szalay, L.The equations 2n ± 2m ± 2l = z 2. Indag. Math. (N.S.) 13 (2002), 131142.CrossRefGoogle Scholar