Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:34:48.440Z Has data issue: false hasContentIssue false

Partitions of large unbalanced bipartites

Published online by Cambridge University Press:  30 October 2014

JULIEN BUREAUX*
Affiliation:
Modal'X, Université Paris Ouest Nanterre La Défense, 200 avenue de la République, 92 000 Nanterre, France. e-mail: [email protected]

Abstract

We compute the asymptotic behaviour of the number of partitions of large vectors (n1, n2) of ℤ+2 in the critical regime n1 ≍ √n2 and in the subcritical regime n1 = o(√n2). This work completes the results established in the fifties by Auluck, Nanda and Wright.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andrews, G. E.The Theory of Partitions. Cambridge Mathematical Library. (Cambridge University Press, Cambridge, 1998). Reprint of the 1976 original.Google Scholar
[2]Hardy, G. H. and Ramanujan, S.Asymptotic formulæ in combinatory analysis. Proc. London Math. Soc. s2–17 (1918), 75115.Google Scholar
[3]Fermi, E.Angular distribution of the pions produced in high energy nuclear collisions. Phys. Rev. 81 (1951), 683687.CrossRefGoogle Scholar
[4]Auluck, F. C.On partitions of bipartite numbers. Proc. Camb. Phil. Soc. 49 (1953), 7283.Google Scholar
[5]Nanda, V. S.Bipartite partitions. Proc. Camb. Phil. Soc. 53 (1957), 273277.CrossRefGoogle Scholar
[6]Wright, E. M.Partitions of large bipartites. Amer. J. Math. 80 (1958), 643658.CrossRefGoogle Scholar
[7]Robertson, M. M.Asymptotic formulæ for the number of partitions of a multi-partite number. Proc. Edinburgh Math. Soc. (2) 12 (1960), 3140.Google Scholar
[8]Robertson, M. M.Partitions of large multipartites. Amer. J. Math. 84 (1962), 1634.CrossRefGoogle Scholar
[9]Fristedt, B.The structure of random partitions of large integers. Trans. Amer. Math. Soc. 337 (1993), 703735.Google Scholar
[10]Báez-Duarte, L.Hardy–Ramanujan's asymptotic formula for partitions and the central limit theorem. Adv. Math. 125 (1997).Google Scholar
[11]Sinaĭ, Y. G.A probabilistic approach to the analysis of the statistics of convex polygonal lines. Funktsional. Anal. i Prilozhen. 28 (1994), 4148.CrossRefGoogle Scholar
[12]Vershik, A. M.Statistical mechanics of combinatorial partitions, and their limit configurations. Funktsional. Anal. i Prilozhen. 30 (1996), 1939.Google Scholar
[13]Bogachev, L. V. and Zarbaliev, S. M.Universality of the limit shape of convex lattice polygonal lines. Ann. Probab. 39 (2011), 22712317.CrossRefGoogle Scholar
[14]Titchmarsh, E. C.The Theory of Functions. (Oxford University Press, 2nd edn., 1976).Google Scholar
[15]Stein, W.et al.Sage Mathematics Software (Version 6.3), The Sage Development Team (2014). http://www.sagemath.org.Google Scholar
[16]Titchmarsh, E. C.The Theory of the Riemann Zeta Function (Oxford University Press, 2nd edn., 1986).Google Scholar
[17]Bhattacharya, R. N. and Rao, R. R.Normal approximation and asymptotic expansions. SIAM. vol. 64 (2010).Google Scholar