Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T13:23:43.486Z Has data issue: false hasContentIssue false

Packing regularity of sets in n-space

Published online by Cambridge University Press:  24 October 2008

Xavier Saint Raymond
Affiliation:
Département de mathématiques, Université Paris-Sud, 91405 Orsay, France
Claude Tricot
Affiliation:
Département de mathématiques, Université du Québec à Montréal, Montréal, P.Q. H3C 3P8, Canada

Extract

The notion of packing measure, introduced in [12], [13] and [10], has been used by comparison with Hausdorif measure to study the regularity and rectifiability of sets in the plane [11]. Since a few technical mistakes can be found in [10], lemma 5·11 and [11], lemma 3·2, we wish in this paper to give the corresponding exact proofs, together with a natural development of this theory in higher dimensions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Besicovitch, A. S.. On the fundamental properties of linearly measurable plane sets of points. Math. Ann. 98 (1928), 422464.Google Scholar
[2]Falconer, K. J.. The Geometry of Fractal Sets (Cambridge University Press, 1985).Google Scholar
[3]Federer, H.. Geometric measure theory. Grundlehren der Math. Wiss. 153 (Springer-Verlag 1969).Google Scholar
[4]de Guzman, M.. Real Variable methods in Fourier Analysis, Mathematics studies 46 (North-Holland, 1981).Google Scholar
[5]Marstrand, J. M.. The (ø,s)-regular subsets of n-space. Trans. Amer. Math. Soc. 113 (1964), 369392.Google Scholar
[6]Mattila, P.. Hausdorff m-regular and rectifiable sets in n-space. Trans. Amer. Math. Soc. 205 (1975), 263274.Google Scholar
[7]Moore, E. F.. Density ratios and (ø, l)-rectifiability in n-space. Trans. Amer. Math. Soc. 55 (1944), 236305.Google Scholar
[8]Preiss, D.. Geometry of measures in Rn: distribution, rectifiability and densities, preprint.Google Scholar
[9]Rogers, C. A.. Hausdorff measures (Cambridge University Press, 1970).Google Scholar
[10]Taylor, S. J. and Tricot, C.. Packing measure and its evaluation for a brownian path. Trans. Amer. Math. Soc. 288 (1985), 679699.CrossRefGoogle Scholar
[11]Taylor, S. J. and Tricot, C.. The packing measure of rectifiable subsets of the plane. Math. Proc. Cambridge Philos. Soc. 99 (1986), 285296.Google Scholar
[12]Tricot, C.. Sur la classification des ensembles boréliens de mesure de Lebesgue nulle. Thèse de doctorat, Genève 1979.Google Scholar
[13]Tricot, C.. Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc. 91 (1982), 5774.CrossRefGoogle Scholar