Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T18:59:36.922Z Has data issue: false hasContentIssue false

Orthogonality preserving linear maps on group algebras

Published online by Cambridge University Press:  05 March 2015

J. ALAMINOS
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: [email protected]
J. EXTREMERA
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: [email protected]
A. R. VILLENA
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. e-mail: [email protected]

Abstract

We consider several types of orthogonality conditions on the group algebra L1(G) of a locally compact group G such as f$\ast $g = 0, f$\ast $g = 0, f$\ast $g = 0, f$\ast $g = g$\ast $f = 0 and f$\ast $g = g$\ast $f = 0, and we describe the linear maps Φ: L1(G) → L1(H) between the group algebras of locally compact groups G and H that take orthogonal functions of L1(G) into orthogonal functions of L1(H). Roughly speaking, they are weighted homomorphisms in the case where we are concerned with the one-sided orthogonality conditions and weighted Jordan homomorphisms in the case where we treat the two-sided orthogonality conditions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Akkar, M. and Laayouni, M.Théorèmes de factorisation dans les algèbres completes de Jordan. Collect. Math. 46 (1995), 239254.Google Scholar
[2]Akkar, M. and Laayouni, M.Théorèmes de factorisation dans les algèbres normées complètes non associatives. Colloquium Mathematicum 70 (1996), 253264.Google Scholar
[3]Alaminos, J., Brešar, M., Extremera, J. and Villena, A. R.Maps preserving zero products. Studia Math. 193 (2009), 131159.Google Scholar
[4]Alaminos, J., Brešsar, M., Extremera, J. and Villena, A. R.Characterising homomorphisms and derivations on C*-algebras. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 17.CrossRefGoogle Scholar
[5]Alaminos, J., Brešsar, M., Extremera, J. and Villena, A. R.Characterizing Jordan maps on C*-algebras through zero products. Proc. Edinburgh Math. Soc. 53 (2010), 543555.Google Scholar
[6]Alaminos, J., Extremera, J. and Villena, A. R.Approximately zero-product-preserving maps. Israel J. Math 178 (2010), 128.Google Scholar
[7]Alaminos, J., Extremera, J. and Villena, A. R.Hyperreflexivity of the derivation space of some group algebras. Math. Z. 266 (2010) 571582.Google Scholar
[8]Alaminos, J., Extremera, J. and Villena, A. R.Hyperreflexivity of the derivation space of some group algebras, II. Bull. London Math. Soc. 44 (2012) 323335.Google Scholar
[9]Alaminos, J., Extremera, J. and Villena, A. R. Disjointness preserving linear maps on Banach function algebras associated with a locally compact group. Preprint.Google Scholar
[10]Burgos, M., Fernández–Polo, F. J., Garcés, J. J., Martínez Moreno, J. and Peralta, A. M.Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples. J. Math. Anal. Appl. 348 (2008), 220233.Google Scholar
[11]Burgos, M., Fernández–Polo, F. J., Garcés, J. J. and Peralta, A. M.Orthogonality preservers revisited. Asian–Eur. J. Math. 2 (2009), 387405.Google Scholar
[12]Chebotar, M. A., Ke, W.-F., Lee, P.-H. and Wong, N.-C.Mappings preserving zero products. Studia Math. 155 (2003), 7794.Google Scholar
[13]Dales, H.G.Banach algebras and automatic continuity. London Math. Soc. Monogr. New Series, 24. Oxford Science Publications (The Clarendon Press, Oxford University Press, New York, 2000).Google Scholar
[14]Font, J. J.Disjointness preserving mappings between Fourier algebras. Colloq. Math. 77 (1998), 179187.Google Scholar
[15]Font, J. J. and Hernández, S.Automatic continuity and representation of certain isomorphisms between group algebras. Indag. Math. (N.S.) 6 (1995), 397409.CrossRefGoogle Scholar
[16]Lau, A. T.-M. and Wong, N.-C.Disjointness and orthogonality preserving linear maps of W*-algebras and Fourier algebras. J. Funct. Anal. 265 (2013), 562593.Google Scholar
[17]Leung, C.-W., Tsai, C.-W. and Wong, N.-C.Linear disjointness preservers of W*-algebras. Math. Z 270 (2012), 699708.CrossRefGoogle Scholar
[18]Lin, Y.-F.Completely bounded disjointness preserving operators between Fourier algebras. J. Math. Anal. Appl. 382 (2011), 469473.Google Scholar
[19]Monfared, M. S.Extensions and isomorphisms for the generalized Fourier algebras of a locally compact group. J. Funct. Anal. 198 (2003), 413444.Google Scholar
[20]Mosak, R. D.Central functions in group algebras. Proc. Amer. Math. Soc. 29 (1971), 613616.Google Scholar
[21]Palmer, T. W.Banach algebras and the general theory of *-algebras. Vol. 2. *-algebras. Encyclopedia Math. Appli., 79 (Cambridge University Press, Cambridge, 2001).Google Scholar
[22]Samei, E.Reflexivity and hyperreflexivity of bounded N-cocycles from group algebras. Proc. Amer. Math. Soc. 139 (2011) 163176.CrossRefGoogle Scholar
[23]Tsai, C.-W. and Wong, N.-C.Linear orthogonality preservers of standard operator algebras. Taiwan. J. Math. 14 (2010), 10471053.CrossRefGoogle Scholar
[24]Wolff, M.Disjointness preserving operators on C*-algebras. Arch. Math. 62 (1994), 248253.Google Scholar