We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $. In this very general context one of the most important results is the Pólya–Vinogradov bound
where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Autissier, P., Bonolis, D. and Lamzouri, Y.. The distribution of the maximum of partial sums of Kloosterman sums and other trace functions. Submitted, 45 pages. arXiv:1909.03266.Google Scholar
[2]
Bober, J.W. and Goldmakher, L.. The distribution of the maximum of character sums. Mathematika59(2) (2013), 427–442.CrossRefGoogle Scholar
[3]
Barton, J. T., Montgomery, H.L. and Vaaler, J. D.. Note on a Diophantine inequality in several variables. Proc. Amer. Math. Soc. 129(2) (2001), 337–345.CrossRefGoogle Scholar
Deligne, P.. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. (52) (1980), 137–252.CrossRefGoogle Scholar
[6]
Fouvry, É., Kowalski, E. and Michel, P.. Trace functions over finite fields and their applications. Colloquia. Ed. Norm. vol. 5 (Pisa, 2014).Google Scholar
[7]
Fouvry, É., Kowalski, E. and Michel, P.. Algebraic twists of modular forms and Hecke orbits. Geom. Funct. Anal.25(2) (2015), 580–657.CrossRefGoogle Scholar
[8]
Fouvry, É., Kowalski, E. and Michel, P.. A study in sums of products. Philos. Trans. Roy. Soc. A373(2040) (2015), 26.Google Scholar
[9]
Fouvry, É., Kowalski, E., Michel, P., Raju, C. S, Rivat, J. and Soundararajan, K.. On short sums of trace functions. Ann. Inst. Fourier (Grenoble)67(1) (2019), 423–449.CrossRefGoogle Scholar
[10]
Fouvry, É., Kowalski, E. and Michel, P.. On the conductor of cohomological transforms. Submitted, arXiv:1310.3603.Google Scholar
[11]
Fouvry, É., Kowalski, E., Michel, P. and Sawin, W.. Lectures on applied l-adic cohomology. Contemp. Math. (2019).Google Scholar
[12]
Goldmakher, L. and Lamzouri, Y.. Lower bounds on odd order character sums. Int. Math. Res. Not. IMRN (21) (2012), 5006–5013.CrossRefGoogle Scholar
[13]
Goldmakher, L. and Lamzouri, Y.. Large even order character sums. Proc. Amer. Math. Soc. 142(8) (2014), 2609–2614.CrossRefGoogle Scholar
[14]
Granville, A. and Soundararajan, K.. Large character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Amer. Math. Soc.20(2) (2007), 357–384.CrossRefGoogle Scholar
[15]
Hooley, C.. On the greatest prime factor of a cubic polynomial. J. Reine Angew. Math. 303/304 (1978), 21–50.Google Scholar
[16]
Iwaniec, H. and Kowalski, E.. Analytic number theory. Amer. Math. Soc. Colloquium Publications. vol. 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
[17]
Katz, N. M.. Sommes exponentielles. Astérisque. Société Mathématique de France, Paris, 1980.Google Scholar
[18]
Katz, N. M.. Gauss sums, Kloosterman sums, and monodromy group. Ann. Math. Stud. (Princeton University Press, Princeton, NJ, 1988).Google Scholar
[19]
Katz, N. M.. Exponential sums and differential equations. Ann. Math. Stud. (Princeton University Press, Princeton, NJ, 1990).Google Scholar
[20]
Kowalski, E., Lau, Y.-K., Soundararajan, K. and Wu, J.. On modular signs. Math. Proc. Camb. Phil. Soc. 149(3) (2010), 389–411.CrossRefGoogle Scholar
[21]
Kowalski, E. and Sawin, W.. Kloosterman paths and the shape of exponential sums. Compos. Math.152(7) (2016), 1489–1516.CrossRefGoogle Scholar
[22]
Lamzouri, Y.. On the distribution of the maximum of cubic exponential sums. J. Inst. Math. Jussieu19(4) (2020), 1259–1286.CrossRefGoogle Scholar
[23]
Montgomery, H. L. and Vaughan, R. C.. Exponential sums with multiplicative coefficients. Invent. Math.43(1) (1977), 69–82.CrossRefGoogle Scholar
[24]
Montgomery, H. L. and Vaughan, R. C.. Mean values of character sums. Canad. J. Math.31(3) (1979), 476–487.CrossRefGoogle Scholar
[25]
Pólya, G.. Über die Verteilung der quadratischen Reste und Nichtreste. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918), 21–29.Google Scholar
[26]
Paley, R. E. A. C.. A Theorem on Characters. J. London Math. Soc.7(1) (1932), 28–32.CrossRefGoogle Scholar
[27]
Perret-Gentil, C.. Gaussian distribution of short sums of trace functions over finite fields. Math. Proc. Camb. Philos. Soc. 163(3) (2017), 385–422.CrossRefGoogle Scholar
[28]
Vinogradov, I. M.. Sur la distribution des résidus et non-résidus des puissances. Fiz.-Mat. Ob. Permsk. Gos. Univ.1, (1918), 94–98.Google Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Autissier, Pascal
Bonolis, Dante
and
Lamzouri, Youness
2021.
The distribution of the maximum of partial sums of Kloosterman sums and other trace functions.
Compositio Mathematica,
Vol. 157,
Issue. 7,
p.
1610.