No CrossRef data available.
Article contents
On the quadratic invariant of binary sextics
Published online by Cambridge University Press: 28 July 2016
Abstract
We provide a geometric characterisation of binary sextics with vanishing quadratic invariant.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 162 , Issue 3 , May 2017 , pp. 435 - 445
- Copyright
- Copyright © Cambridge Philosophical Society 2016
References
REFERENCES
[1]
Bryant, R. L.
Metrics with exceptional holonomy. Ann. of Math.
126 (1987), 525–576.Google Scholar
[3]
Doubrov, B. and Dunajski, M.
Co–calibrated G
2 structure from cuspidal cubics. Ann. Global Anal. Geom.
42 (2012), 247–265.Google Scholar
[4]
Dunajski, M. and Godliński, M.
GL(2, ℝ) structures, G
2 geometry and twistor theory. Quart. J. Math
63 (2012), 101–132.Google Scholar
[5]
Dunajski, M. and Sokolov, V. V.
On 7th order ODE with submaximal symmetry. J. Geom. Phys.
61 (2011), 1258–1262.Google Scholar
[6]
Eastwood, M. G. and Isaev, A. V.
Extracting invariants of isolated hypersurface singularities from their moduli algebras. Math. Ann.
356 (2013), 73–98.Google Scholar
[7]
Elliott, E. B.
An Introduction to the Algebra of Quantics (Oxford University Press, Clarendon Press, Oxford, 1895).Google Scholar
[8]
Grace, J. H. and Young, A.
The Algebra of Invariants (Cambridge University Press, Cambridge, 1903).Google Scholar
[9]
Hitchin, N.
Vector Bundles and the Icosahedron. Contemp. Math.
522
Amer. Math. Soc. (Providence, RI 2010), 71–87.CrossRefGoogle Scholar
[10]
Igusa, J. I.
Arithmetic variety of moduli of genus two. Ann. of Math.
72 (1960), 612–649.Google Scholar
[11]
Kodaira, K.
On stability of compact submanifolds of complex manifolds. Amer. J. Math.
85 (1963), 79–94.Google Scholar
[12]
Kung, J. P. S. and Rota, G.
The invariant theory of binary forms. Bull. AMS
10 (1984), 27–85.Google Scholar
[13]
Mumford, D., Fogarty, J. and Kirwan, F.
Geometric Invariant Theory (Springer-Verlag, 1994).CrossRefGoogle Scholar
[14]
Olver, P.
Classical Invariant Theory (Cambridge University Press, Cambridge, 1999).Google Scholar
[15]
Penrose, R.
Nonlinear gravitons and curved twistor theory. Gen. Rel. Grav.
7 (1976), 31–52.Google Scholar
[17]
Penrose, R. and Rindler, W.
Spinors and space-time. Two-spinor calculus and relativistic fields. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1987, 1988).Google Scholar
[18]
Sylvester, J. J.
On the calculus of forms, otherwise the theory of invariants. Cambridge and Dublin Mathematical Journal
IX (1854), 85–103.Google Scholar
[19]
Sylvester, J. J.
On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Amer. Journ. Math.
I. (1878), 64–125.Google Scholar
[20]
Zimba, J. and Penrose, R.
On Bell nonlocality without probabilities: more curious geometry.
Stud. Hist. Philos. Sci.
24 (1993), 697–720.Google Scholar