On the product of three non-homogeneous linear forms
Published online by Cambridge University Press: 24 October 2008
Extract
Let ξ, η, ζ be linear forms in u, v, w with real coefficients and determinant Δ ≠ 0. Then there exists a number ℳ such that, corresponding to any real numbers a, b, c, there exist rational integers u, v, w for which
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 47 , Issue 2 , April 1951 , pp. 260 - 265
- Copyright
- Copyright © Cambridge Philosophical Society 1951
References
* Remak, R.Math. Z. 17 (1923), 1–34CrossRefGoogle Scholar, and 18 (1923), 173–200.
† Davenport, H.J. London Math. Soc. 14 (1939), 47–51.CrossRefGoogle Scholar
‡ Davenport, H.Proc. Cambridge Phil. Soc. 43 (1947), 137–52.CrossRefGoogle Scholar
§ Prasad, A. V.Proc. K. Akad. Wet. Amsterdam, 52 (1949), 55–65 and 112–24.Google Scholar
∥ See Table II of Reid's, L. W. thesis Tafel der Klassenanzahlen für kubische Zahlkörper (Göttingen, 1899).Google Scholar
* Davenport, H.Proc. Cambridge Phil. Soc. 43 (1947), 137–52.CrossRefGoogle Scholar
- 5
- Cited by