Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T12:30:39.124Z Has data issue: false hasContentIssue false

On the mean square formula of the error term in the Dirichlet divisor problem

Published online by Cambridge University Press:  01 March 2009

YUK-KAM LAU
Affiliation:
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. e-mail: [email protected], [email protected]
KAI-MAN TSANG
Affiliation:
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. e-mail: [email protected], [email protected]

Abstract

Let F(x) be the remainder term in the mean square formula of the error term Δ(t) in the Dirichlet divisor problem. We improve on the upper estimate of F(x) obtained by Preissmann around twenty years ago. The method is robust, which applies to the same problem for the error terms in the circle problem and the mean square formula of the Riemann zeta-function.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atkinson, F. V.The mean value of the Riemann-zeta function. Acta Math. 81 (1949), 353376.CrossRefGoogle Scholar
[2]Cramér, H.Über zwei Sätze von Herrn G. H. Hardy. Math. Zeit. 15 (1922), 200210.CrossRefGoogle Scholar
[3]Heath-Brown, D. R.The mean value theorem for the Riemann zeta function. Mathematika 25 (1978), 177184.CrossRefGoogle Scholar
[4]Heath-Brown, D. R.The fourth power moment of the Riemann zeta function. Proc. London Math. Soc. 38 (1979), 385422.CrossRefGoogle Scholar
[5]Heath–Brown, D. R.The distribution and moments of the error term in the Dirichlet divisor problem. Acta Arith. 60 (1992), 389415.CrossRefGoogle Scholar
[6]Heath–Brown, D. R. and Tsang, K.Sign changes of E(T), Δ(x), and P(x). J. Number Theory 49 (1994), 7383.CrossRefGoogle Scholar
[7]Huxley, M. N.Exponential sums and lattice points III. Proc. London Math. Soc. 87 (2003), 591609.CrossRefGoogle Scholar
[8]Ivić, A.Large values of the error term in the divisor problem. Invent. Math. 71 (1983), 513520.CrossRefGoogle Scholar
[9]Ivić, A. Mean values of the Riemann zeta function. Lectures Math. Physics 82. Tata Inst. Fund. Res., Bombay. (Springer, 1991).Google Scholar
[10]Ivić, A.The Laplace transform of the square in the circle and divisor problems. Studia Sci. Math. Hungar. 32 (1996), 181205.Google Scholar
[11]Lau, Y.-K. and Tsang, K.-M.Mean square of the remainder term in the Dirichlet divisor problem. J. Théor. Nombres Bordeaux 7 (1995), 7592.CrossRefGoogle Scholar
[12]Lau, Y.-K. and Tsang, K.-M.Moments over short intervals. Arch. Math. (Basel) 84 (2005), 249257.CrossRefGoogle Scholar
[13]Meurman, T.On the mean square of the Riemann zeta-function. Quart. J. Math. Oxford Ser. (2) 38 (1987), 337343.CrossRefGoogle Scholar
[14]Montgomery, H. L. and Vaughan, R. C.Hilbert's inequality. J. London Math. Soc. 8 (1974), 7382.CrossRefGoogle Scholar
[15]Nowak, W. G.On the divisor problem: moments of Δ(x) over short intervals. Acta Arith. 109 (2003), 329341.CrossRefGoogle Scholar
[16]Nowak, W. G.Lattice points in a circle: an improved mean-square asymptotics. Acta Arith. 113 (2004), 259272.CrossRefGoogle Scholar
[17]Preissmann, E.Sur la moyenne quadratique du terme de reste du problme du cercle. C. R. Acad. Sci. Paris Sr. I Math. 306 (1988), 151154.Google Scholar
[18]Soundararajan, K. Omega results for the divisor and circle problems. Int. Math. Res. Not. (2003), 1987–1998.CrossRefGoogle Scholar
[19]Tong, K.-C.On divisor problems III. (Chinese) Acta Math. Sinica 6 (1956), 515541.Google Scholar
[20]Tsang, K.-M.Higher-power moments of Δ(x), E(t) and P(x). Proc. London Math. Soc. 65 (1992), 6584.CrossRefGoogle Scholar
[21]Tsang, K.-M.Mean square of the remainder term in the Dirichlet divisor problem II. Acta Arith. 71 (1995), 279299.CrossRefGoogle Scholar