Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T08:36:29.855Z Has data issue: false hasContentIssue false

On the Hilbert functions of sets of points in $\mathbb{P}$1 × $\mathbb{P}$1 × $\mathbb{P}$1

Published online by Cambridge University Press:  04 May 2015

ELENA GUARDO
Affiliation:
Dipartimento di Matematica e Informatica, Viale A. Doria, 6 - 95100 - Catania, Italy. e-mail: [email protected]
ADAM VAN TUYL
Affiliation:
Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S4L8, Canada. e-mail: [email protected]

Abstract

Let HX be the trigraded Hilbert function of a set X of reduced points in $\mathbb{P}$1 × $\mathbb{P}$1 × $\mathbb{P}$1. We show how to extract some geometric information about X from HX. This paper generalises a similar result of Giuffrida, Maggioni and Ragusa about sets of points in $\mathbb{P}$1 × $\mathbb{P}$1.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bigatti, A., Geramita, A.V. and Migliore, J. Geometric consequences of extremal behavior in a theorem of Macaulay. Trans. Amer. Math. Soc. 346 (1994), 203235.Google Scholar
[2] Chiantini, L. and Migliore, J. Almost maximal growth of the Hilbert function. Preprint (2014), arXiv:1403.1409.Google Scholar
[3] CoCoATeam. CoCoA: a system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it.Google Scholar
[4] Geramita, A.V., Gregory, D. and Roberts, L.G. Monomial ideals and points in projective space. J. Pure Appl. Algebra 40 (1986), 3362.Google Scholar
[5] Geramita, A.V., Harima, T. and Shin, Y.S. An alternative to the Hilbert function for the ideal of a finite set of points in $\mathbb{P}$ n . Illinois J. Math. 45 (2001), 123.Google Scholar
[6] Geramita, A.V., Maroscia, P. and Roberts, L.G. The Hilbert function of a reduced k-algebra. J. London Math. Soc. 28 (1983), 443452.Google Scholar
[7] Giuffrida, S., Maggioni, R. and Ragusa, A. On the postulation of 0-dimensional subschemes on a smooth quadric. Pacific J. Math. 155 (1992), 251282.Google Scholar
[8] Guardo, E. Fat point schemes on a smooth quadric. J. Pure Appl. Algebra 162 (2001), 183208.Google Scholar
[9] Maggioni, R. and Ragusa, A. The Hilbert function of generic plane sections of curves of $\mathbb{P}$ 3 . Invent. Math. 91 (1988), 253258.Google Scholar
[10] Van, A. Tuyl. The border of the Hilbert function of a set of points in $\mathbb{P}$ n1 × . . . × $\mathbb{P}$ nk . J. Pure Appl. Algebra 176 (2002), 223247.Google Scholar