Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T12:40:56.113Z Has data issue: false hasContentIssue false

On the fundamental group of the complement of certain singular plane curves

Published online by Cambridge University Press:  24 October 2008

András Némethi
Affiliation:
Department of Mathematics, INCREST, 79622 Bucharest, Romania

Extract

Let C be a complex algebraic curve in the projective space ℙ2. The purpose of this paper is to calculate the fundamental group G of the complement of C in the case when C = XH1 ∩ … ∩ Hn−2, where

and Hi are generic hyperplanes (i = 1, … n − 2).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Deligne, P.. Le groupe fondamental du complement d'une courbe plane n'ayant que des points doubles ordinaires est abélien. Séminare Bourbaki 1979/80, Lecture Notes in Math., vol. 882 (Springer-Verlag, 1981), 110.Google Scholar
[2]Hamm, H. A. and , D. T.. Un théorème de Zariski du type de Lefschetz. Ann. Sci. École Norm. Sup. (4) 6 (1973), 317366.CrossRefGoogle Scholar
[3]Kato, M. and Matsumoto, Y.. On the connectivity of the Milnor fiber of a holomorphic function at a critical point. In Manifolds, Tokyo 1973 (University of Tokyo Press, 1975), 131136.Google Scholar
[4]Lang, S.. Algebra (Addison-Wesley, 1965).Google Scholar
[5]Milnor, J.. Singular points of complex hypersurfaces. Ann. of Math. Studies 61 (1968).Google Scholar
[6]Némethi, A.. The generic fiber of some polynomial maps. Preprint INCREST, 1986.Google Scholar
[7]Oka, M.. On the fundamental group of the complement of certain plane curves. J. Math. Soc. Japan (4) 30 (1978), 579597.Google Scholar
[8]Oka, M.. The monodromy of a curve with ordinary double points. Inventiones Math. 27 (1974), 157164.CrossRefGoogle Scholar
[9]Oka, M.. On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials. Topology 12 (1973), 1932.CrossRefGoogle Scholar
[10]Randell, R.. On the fundamental group of the complement of a singular plane curve. Quart.J. Math. Oxford (2) 31 (1980), 7179.CrossRefGoogle Scholar
[11]Suzuki, M.. Group Theory I. Grundlehren der mathematischen Wissenschaften 247 (Springer-Verlag, 1982).CrossRefGoogle Scholar
[12]Zariski, O.. On the problem of existence of algebraic functions of two variables possessing a given branch curve. Amer. J. Math. 51 (1929).CrossRefGoogle Scholar