Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T18:31:49.834Z Has data issue: false hasContentIssue false

On the evaluation of the confluent hypergeometric function

Published online by Cambridge University Press:  24 October 2008

L. J. Slater
Affiliation:
The Mathematical LaboratoryCambridge

Abstract

This paper contains a table of the confluent hypergeometric function over the range a = − 1·0(0·1) + 1·0, b = 0·1(0·1)1·0, x= 1·0(1·0)10·0, and the expansions in converging factors by means of which the accuracy of the asymptotic expansions for higher values of x can be improved.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Barnes, E. W.Trans. Camb. phil. Soc. 20 (1908), 253–79.Google Scholar
(2)Connolly, B. W.Quart. J. Medi. 3 (1950), 236–40.Google Scholar
(3)Fletcher, A., Miller, J. C. P and Rosenhead, L.Index of mathematical tables (London, 1946).Google Scholar
(4)Gauss, C. F.Relationes inter functiones contiguos. Ges. Werke, vol. 3 (1866).Google Scholar
(5)Kummer, E. E.Über die hypergeometrische Reihe. J. Math. 15 (1836), 127–72.Google Scholar
(6)Miller, J. C. P.A method for the determination of converging factors. Proc. Camb. phil. Soc. 48 (1952), 243–54.Google Scholar