Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:33:41.836Z Has data issue: false hasContentIssue false

On the dual and hessian mappings of projective hypersurfaces

Published online by Cambridge University Press:  24 October 2008

A. D. R. Choudary
Affiliation:
Facultad de Ciencias, Universidad de Guadalajara, Mexico
A. Dimca
Affiliation:
Department of Mathematics, INCREST, 79622 Bucharest, Romania

Extract

We investigate the first-order Thom–Boardman singularity sets of the dual mapping for an arbitrary (and then for a generic) smooth hypersurface in the complex projective space ℙn. Our results focus on nonemptiness, connectedness, regular stratifications and numerical invariants for these sets.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barth, W.. Counting singularities of quadratic forms on vector bundles. In Vector Bundles and Differential Equations. Proc. of the Nice Conf. 1979. Progress in Math. No. 9 (Birkhäuser, 1980), 119.Google Scholar
[2]Bertini, E.. Geometria Proiettiva degli Iperspazi (Giuseppe Principato, Messina, 1923).Google Scholar
[3]Bruce, J. W.. The duals of generic hypersurfaces. Math. Scand. 49 (1981), 3660.Google Scholar
[4]Dimca, A.. A geometric approach to the classification of pencils of quadrics. Geom. Dedicata 14 (1983), 105111.CrossRefGoogle Scholar
[5]Dimca, A.. On isolated singularities of complete intersections. J. London Math. Soc. (2) 31 (1985), 401406.CrossRefGoogle Scholar
[6]Fulton, W. and Lazarsfeld, R.. Connectivity and its applications in algebraic geometry, in Algebraic Geometry, Chicago 1980, Lecture Notes in Math. vol. 862 (Springer-Verlag, 1981), 2692.Google Scholar
[7]Fulton, W. and Lazarsfeld, R.. On the connectedness of degeneracy loci and special divisors. Acta Math. 146 (1981), 271283.Google Scholar
[8]Gibson, C. G., Wirthmüller, K., du Plessis, A. A. and Looijenga, E. J. N.. Topological Stability of Smooth Mappings. Lecture Notes in Math. vol. 552 (Springer-Verlag, 1976).Google Scholar
[9]Godeaux, L.. Géométrie Algébrique, tome 1er (Sciences et lettres, Liège, 1948).Google Scholar
[10]Golubitsky, M. and Guillemin, V.. Stable Mappings and Their Singularities. Graduate Texts in Math. 14 (Springer-Verlag, 1973).Google Scholar
[11]Harris, J. and Tu, L. W.. On symmetric and skew-symmetric determinantal varieties. Topology 23 (1984), 7184.Google Scholar
[12]Hartshorne, R.. Algebraic Geometry. Graduate Texts in Math. 52 (Springer-Verlag, 1977).Google Scholar
[13]Ronga, F.. Le calcul des classes duales aux singularités de Boardman d'ordre deux. Comment. Math. Helv. 47 (1) (1972), 1535.Google Scholar
[14]Vainsencher, I.. The degrees of certain strata of the dual variety. Compositio Math. 38 (1979), 241252.Google Scholar
[15]Wall, C. T.C.. Regular stratifications. In Dynamical Systems–Warwick 1974, Lecture Notes in Math. vol. 468 (Springer-Verlag, 1975), 332344.CrossRefGoogle Scholar