Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T07:47:46.488Z Has data issue: false hasContentIssue false

On the differential equations for the transition probabilities of Markov processes with enumerably many states

Published online by Cambridge University Press:  24 October 2008

G. E. H. Reuter
Affiliation:
The UniversityManchester
W. Ledermann
Affiliation:
The UniversityManchester

Extract

Let pik (s, t) (i, k = 1, 2, …; st) be the transition probabilities of a Markov process in a system with an enumerable set of states. The states are labelled by positive integers, and pik (s, t) is the conditional probability that the system be in state k at time t, given that it was in state i at an earlier time s. If certain regularity conditions are imposed on the pik, they can be shown to satisfy the well-known Kolmogorov equations§

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Arley, N.Stochastic processes and cosmic radiation (Copenhagen, 1943).Google Scholar
(2)Bartlett, M. S.Some evolutionary stochastic processes. J. R. statist. Soc. B, 11 (1949), 211–29.Google Scholar
(3)Bourbaki, N.Fonctions d'une variable réelle (Éléments de mathematique, fasc. 12, Paris, 1951).Google Scholar
(4)Doob, J. L.Markoff chains—denumerable case. Trans. Amer. math. Soc. 58 (1945), 455–73.Google Scholar
(5)Feller, W.On the integro-differential equations of purely discontinuous Markoff processes. Trans. Amer. math. Soc. 48 (1940), 488515.CrossRefGoogle Scholar
(6)Feller, W.An introduction to probability theory and its applications, vol. 1 (New York, 1951).Google Scholar
(7)Fréchet, M.Méthode des fonctions arbitraires (Traité du calcul des probabilités et de ses applications, ed. Tome, E. Borel 1, fasc. 2, livre 2, 2nd ed. (Paris, 1952)).Google Scholar
(8)Kendall, D. G.Stochastic processes and population growth. J. R. statist. Soc. B, 11 (1949), 230–64.Google Scholar
(9)Kolmogoroff, A.Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931), 415–58.CrossRefGoogle Scholar
(10)Lefschetz, S.Lectures on differential equations (Ann. Math. Stud. no. 14, Princeton, 1946).Google Scholar
(11)Titchmarsh, E. C.The theory of functions, 2nd ed. (Oxford, 1939).Google Scholar