Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T04:21:16.072Z Has data issue: false hasContentIssue false

On the development of a solitary wave moving over an uneven bottom

Published online by Cambridge University Press:  24 October 2008

R. S. Johnson
Affiliation:
School of Mathematics, University of Newcastle upon Tyne

Abstract

The numerical and experimental results given in Madsen and Mei(16) are predicted using asymptotic methods and some knowledge of the Korteweg-de Vries (K-dV) equation. This is accomplished by first deriving, using formal asymptotic expansions, the K-dV equation valid over a variable depth. The depth is chosen, in the first instance, to slowly vary on the same scale as the initial (small) amplitude of the motion. The appropriate form of the Kd-V equation is then

where H(X,ξ) describes the surface profile and d(σX) is the changing depth. The rest of the paper is devoted to a study of this equation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Abramowitz, M. and Stegun, I. A.Handbook of mathematicalfunctions (Dover, 1965).Google Scholar
(2)Berezin, Y. A. and Karpman, V. I.Soviet Physics. J.E.T.P. 24 (1967), 10491056.Google Scholar
(3)Boussinesq, J.C. R. Acad. Sci. Paris 72 (1871), 755759.Google Scholar
(4)Boussinesq, J.J. of Maths., Liouville. 17 (1872), 55108.Google Scholar
(5)Cole, J. D.Perturbation methods in applied mathematics (Blaisdell, 1968).Google Scholar
(6)Cornish, V.Waves of the sea and other water waves (Unwin, 1910).CrossRefGoogle Scholar
(7)Freeman, N. C. and Jounson, R. S.J. Fluid Mech. 42 (1970), 401409.Google Scholar
(8)Grimshaw, R.J. Fluid Mech. 42 (1970), 639656.CrossRefGoogle Scholar
(9)Ippen, A. T. and Kulin, G.M.I.T. Hydrodynamics Lab. Tech. Rep. No. 15, 1970.Google Scholar
(10)Jeffrey, A. and Kakutani, T.Internal Report, Dept. of Eng. Maths. (University of Newcastle upon Tyne, 1971).Google Scholar
(11)Johnson, R. S.J. Fluid Mech. 42 (1970), 4960.CrossRefGoogle Scholar
(12)Johnson, R. S.J. Fluid Mech. 54 (1972), 8191.Google Scholar
(13)Korteweg, D. J. and De Vries, G.Philos. Mag. 39 (1895), 422443.Google Scholar
(14)Kuzmak, G. E.Prikl. Mat. Meh. 23 (1959), 515526 (translated in J. Appl. Math. Mech. 23 (1959), 730–744).Google Scholar
(15)Lamb, H.Hydrodynamics (6th ed.) (Cambridge University Press, 1956).Google Scholar
(16)Luke, J. C.Proc. Roy. Soc., Ser. A 292 (1966), 403412.Google Scholar
(17)Madsen, O. S. and Mei, C. C.J. Fluid Mech. 39 (1969), 781791.Google Scholar
(18)Miura, R. M. et al. J. Mathematical Phys. 9 (1968), 12041209.CrossRefGoogle Scholar
(19)Miura, R. M. Notes from a lecture given at Lehigh University, Bethlehem (1970).Google Scholar
(20)Peregrine, D. H.J. Fluid Mech. 27 (1967), 815827.CrossRefGoogle Scholar
(21)Russell, J. Scott.Report on waves. Brit. Ass. Rep. (1837), 417496.Google Scholar
(22)Tappert, F. and Zabusky, N. J.Phys. Rev. Lett. 27 (1971), 17741776.CrossRefGoogle Scholar
(23)Varley, E. and Cumberbatch, E.J. Inst. Math. Appl. 1 (1965), 101112.CrossRefGoogle Scholar
(24)Whitham, G. B.J. Fluid Mech. 44 (1970), 373395.CrossRefGoogle Scholar
(25)Zabusky, N.J. Phys. Rev. 168 (1968), 124130.Google Scholar