Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T13:17:30.348Z Has data issue: false hasContentIssue false

On the bifurcation of steady vortex rings from a Green function

Published online by Cambridge University Press:  24 October 2008

Tadie
Affiliation:
Mathematics Division, University of Sussex, Falmer, Brighton, BN1 9QH

Extract

This paper is a supplement to [2]. There, solutions ψ., (μ) of certain free-boundary problems, depending on a small parameter μ, are related to the Green function G., (a(μ)) of a second-order, elliptic, partial differential equation defined on a bounded set Ω ⊂ ℝ2. The free boundary is the boundary of a set A(μ) ⊂ Ω that is unknown a priori and corresponds to the cross-section of a steady vortex ring or of a confined plasma in equilibrium, for example.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Amick, C. J. and Fraenkel, L. E.. The uniqueness of Hill's spherical vortex. Arch. Rational Mech. Anal. 92 (1986), 91119.CrossRefGoogle Scholar
[2]Berger, M. S. and Fraenkel, L. E.. Nonlinear desingularization in certain free-boundary problems. Commun. Math. Phys. 77 (1980), 149172.CrossRefGoogle Scholar
[3]Edmunds, D. E. and Evans, W. D.. Spectral Theory and Differential Operators (Oxford University Press, 1987).Google Scholar
[4]Fraenkel, L. E.. A lower bound for electrostatic capacity in the plane. Proc. Roy. Soc. Edinburgh sect. A 88 (1981), 267273.Google Scholar
[5]Fraenkel, L. E. and Berger, M. S.. A global theory of steady vortex rings in an ideal fluid. Acta Math. 132 (1974), 1351.CrossRefGoogle Scholar
[6]Jung, H.. Uber die kleinste Kugel, die eine raumliche Figur einschliesst. J. Reine Angew. Math. 123 (1901), 241257.Google Scholar
[7]Lamb, H.Hydrodynamics (Cambridge University Press, 1932).Google Scholar
[8]Ni, W. M.. On the existence of global vortex rings. J. d'Analyse Math. 37 (1980), 208247.CrossRefGoogle Scholar
[9]Nirenberg, L.. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115162.Google Scholar
[10]Norbury, J.. Steady planar vortex pairs in an ideal fluid. Commun. Pure Appl. Math. 28 (1975), 679700.CrossRefGoogle Scholar
[11]Norbuey, J.. A family of Steady vortex rings. J. Fluid Mech. 53 (3) (1973), 417431.CrossRefGoogle Scholar
[12]Watson, G. N.. Theory of Bessel Functions (Cambridge University Press, 1952).Google Scholar
[13]Weinstein, A.. Generalized axially symmetric potential theory. Bull. Amer. Math. Soc. 59 (1953), 2038.CrossRefGoogle Scholar
[14]Widman, K. O.. Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scan. 21 (1967), 1737.CrossRefGoogle Scholar