On the average order of the lattice rest of a convex planar domain
Published online by Cambridge University Press: 24 October 2008
Extract
Let denote a compact convex subset of the Euclidean plane containing the origin as an inner point and assume that the boundary ∂ of is a C∞-image of the 1-torus with finite nonvanishing curvature throughout. As a generalization of the classical circle problem in analytic number theory we consider, for a large parameter t, the number A(t) of lattice points (of the standard lattice ℤ2) in the ‘blown up’ domain and define the ‘lattice rest’ by (where is the area of ).
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 98 , Issue 1 , July 1985 , pp. 1 - 4
- Copyright
- Copyright © Cambridge Philosophical Society 1985
References
REFERENCES
[1]Bochner, S.. Die Poissonsche Summenformel in mehreren Veränderlichen. Math. Ann. 106 (1932), 56–63.CrossRefGoogle Scholar
[3]Van Der Corput, J. G.Neue zahlentheoretische Abschätzungen. Math. Ann. 89 (1923), 215–254.CrossRefGoogle Scholar
[5]Hardy, G. H.. On Dirichlet's divisor problem. Proc. London Math. Soc. (2) 15 (1916), 1–25.Google Scholar
[6]Hlawka, E.. Integrale auf konvexen Körpern I. Monatsh. Math. 54 (1950), 1–36.CrossRefGoogle Scholar
[7]Hlawka, E.. Integrale auf konvexen Körpern II. Monatsh. Math. 54 (1950), 81–99.CrossRefGoogle Scholar
[8]Kátai, I.. The number of lattice points in a circle (Russian). Ann. Univ. Sci. Budapest Rolando Eötvös, Sect. Math. 8 (1965), 39–60.Google Scholar
[9]Landau, E.. über die Gitterpunkte in einem Kreise. (Vierte Mitteilung.) Nachr. Königl. Ges. Wiss. Göttingen, math.-phys. Kl. 1923 (1923), 58–65.Google Scholar
[10]Nowak, W. G.. Zur Gitterpunktlehre der euklidischen Ebene. Indag. Math. 46 (1984), 209–223.CrossRefGoogle Scholar
[11]Nowak, W. G.. An Ω-estimate for the lattice rest of a convex planar domain. To appear in Proc. Roy. Soc. Edinburgh, Sect. A.Google Scholar
- 8
- Cited by