Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T15:15:26.046Z Has data issue: false hasContentIssue false

On the Asymptotic Periods of Integral Functions

Published online by Cambridge University Press:  24 October 2008

Sheila Scott
Affiliation:
Girton College

Extract

A period of a function f(z) is defined to be a number ω (≠ 0) such that

is identically zero; and it can be shown that an integral function may either have no periods or else a single sequence kλ (k = ± 1, ± 2, …).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1935

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

* Whittaker, J. M., Proc. Edinburgh Math. Soc. 3 (1933), 241–58CrossRefGoogle Scholar; 4 (1934), 77–8.

Guichard, C., Annales Sci. de l' Ecole Normale, 4 (1887), 361–80.CrossRefGoogle Scholar

* Valiron, G., Integral functions (Toulouse, 1923), p. 41.Google Scholar

* Nörlund, N. E., Sur la “somme” d'une fonction (Paris, 1927), p. 10.Google Scholar

Ibid., p. 8.

* Nörlund, N. E., Sur la “somme” d'une fonction (Paris, 1927), pp. 7, 8.Google Scholar

* See Titchmarsh, , Theory of Functions, p. 186.Google Scholar

* F., and Nevanlinna, R., Acta Soc. Sci. Fen. 50 (1922), 8.Google Scholar

* See F., and Nevanlinna, R., Acta Soc. Sci. Fen. 50 (1922), 22Google Scholar. Replace the imaginary by the real axis and write ø = θ − π/2.

* Cartwright, M. L., Proc. London Math. Soc. (2), 38 (1933), 158–79 (168)Google Scholar, Theorem III.

* Phragmén, E. and Lindelöf, E., Acta Math. 31 (1908), 381406.CrossRefGoogle Scholar

* Whittaker, J. M., “On the asymptotic periods of integral functions”, Proc. Edinburgh Math. Soc. 3 (1933), 241258.CrossRefGoogle Scholar

Loc. cit. p. 242.