Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T13:30:55.121Z Has data issue: false hasContentIssue false

On summability domains

Published online by Cambridge University Press:  24 October 2008

N. J. Kalton
Affiliation:
Department of Mathematics, University College of Swansea, Singleton Park, Swansea SA2 8PP

Extract

We denote by ω the space of all complex sequences with the topology given by the semi-norms

where δn(x) = xn. An FK-space, E, is a subspace of ω on which there exists a complete metrizable locally convex topology τ, such that the inclusion (E, τ) ⊂ ω is continuous; if τ is given by a single norm then E is a BK-space.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Banach, S.Théorie des opérations linéares (Warsaw, 1932).Google Scholar
(2)Bennett, G.A representation theorem for summability domains. Proc. London Math. Soc. (2), 24 (1972), 193203.Google Scholar
(3)Eidelheit, M.Zur Theorie der Systeme Lineare Gleichungen. Studia Math. 6 (1936), 139148.Google Scholar
(4)Eidelheit, M.Zur Theorie der Systeme Lineare Gleichungen (II). Studia Math. 7 (1938), 150154.Google Scholar
(5)Garling, D. J. H.On topological sequence spaces. Proc. Cambridge Philos. Soc. 63 (1967), 9971019.Google Scholar
(6)Kalton, N. J.Some forms of the closed graph theorem. Proc. Cambridge Philos. Soc. 70 (1971), 401408.Google Scholar
(7)Markushevich, A. I.Theory of functions of a complex variable (Prentice-Hall, Englewood Cliffs, 1965).Google Scholar
(8)Mittag-Leffler, G.Sur la représentation analytique des fonctions monogènes uniformes d'une variable indépendante. Acta. Math. 4 (1884), 179.Google Scholar
(9)Petersen, G. M. and Thompson, A. C.Infinite linear systems. J. London Math. Soc. 38 (1963), 335340.Google Scholar
(10)Petersen, G. M. and Thompson, A. C.On a theorem of Polya. J. London Math. Soc. 39 (1964), 3134.Google Scholar
(11)Petersen, G. M. and Baker, A. C.Solvable infinite systems of linear equations. J. London Math. Soc. 39 (1964), 501510.CrossRefGoogle Scholar
(12)Petersen, G. M. and Baser, A. C.On a theorem of Polya (II). J. London Math. Soc. 39 (1964), 745752.CrossRefGoogle Scholar
(13)Polya, G.Eine einfache, mit funktionentheoretischen Aufgaben, verknüpfte, hinreichende Bedingung für die Auflösbarkeit eines Systems unendlich vieler linearer Gleichungen. Comment. Math. Helv. 11 (1939), 234252.Google Scholar
(14)Robertson, A. P. and Robertson, W.Topological vector spaces (Cambridge University Press, 1964).Google Scholar
(15)Zeller, K.Abschnittskonvergenz in FK-Raümen. Math. Z. 55 (1951), 5570.CrossRefGoogle Scholar
(16)Zeller, K.Über der perfekten Teil von Wilden. Math. Z. 64 (1956), 123130.CrossRefGoogle Scholar