Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T18:23:15.377Z Has data issue: false hasContentIssue false

On subordinated distributions and random record processes

Published online by Cambridge University Press:  24 October 2008

P. Embrechts
Affiliation:
Katholieke Universiteit Leuven and Economische Hogeschool Sint-Aloysius Brussels
E. Omey
Affiliation:
Katholieke Universiteit Leuven and Economische Hogeschool Sint-Aloysius Brussels

Abstract

Consider a sequence of i.i.d. random variables attached to the points of an independent point process . The random record process is the process of epochs of successive maxima in this sequence. Various limit theorems are proved for the distribution of times to successive records and interrecord times. Some new results on the tail-behaviour of subordinated distributions are needed.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Chandler, K. N.The distribution and frequency of record values. J. Roy. Statist. Soc. Ser. B 14 (1952), 220228.Google Scholar
(2)Embrechts, P., Goldie, C. M. and Veraverbeke, N.Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheor. & verw. Geb. 49 (1979), 335347.Google Scholar
(3)Feller, W.An introduction to probability theory and its applications, vol. 2 (Wiley, New York, 1971).Google Scholar
(4)Frenk, J. B. G. Renewal functions and regular variation. Erasmus University Rotterdam (The Netherlands). Econometrics Institute Report 8016/S (1981).Google Scholar
(5)Gaver, D. P.Random record models. J. Appl. Probab. 13 (1976), 538547.Google Scholar
(6)Geluk, J. L. and De Haan, L. On functions with small differences. Indagationes Mathematicae 43 (1981), 187194.Google Scholar
(7)Gradshteyn, I. S. and Ryzhik, I. M.Tables of integrals, series and products (Academic Press, New York, 1980).Google Scholar
(8)Greenwood, P., Omey, E. and Teugels, J. L.Harmonic renewal measures. Z. Wahrscheinlichkeitstheor. & verw. Geb. 59 (1982), 391410.Google Scholar
(9)de Haan, L.On regular variation and its applications to the weak convergence of sample extremes. (Mathematisch Centrum, Amsterdam, 1970).Google Scholar
(10)de Haan, L.Equivalence classes of regularly varying functions. Stochastic Process & Appl. 2 (1974), 243260.Google Scholar
(11)de Haan, L.An Abel–Tauber theorem for Laplace transforms. J. London Math. Soc. 2nd ser., 13 (1976), 537542.Google Scholar
(12)de Haan, L.On functions derived from regularly varying functions. J. Austral. Math. Soc. A 23 (1977), 431438.Google Scholar
(13)Jordan, C.Calculus of finite differences (Chelsea, New York, 1950).Google Scholar
(14)Kalma, J. M. Generalised renewal measures. Thesis, Groningen University (1972).Google Scholar
(15)Maller, R.Relative stability, characteristic functions and stochastic compactness. J. Austral. Math. Soc. A 28 (1979), 499509.Google Scholar
(16)Seneta, E. Regularly varying functions. Lecture Notes in Mathematics, no. 508 (Springer-Verlag, Berlin, 1976).Google Scholar
(17)Smith, W. L.On the weak law of large numbers and the generalised elementary renewal theorem. Paci. J. Math. 22 (1967), 171188.Google Scholar
(18)Stam, A. J.Regular variation of the tail of a subordinated probability distribution. Adv. Appl. Probab. 5 (1973), 308327.Google Scholar
(19)Teugels, J. L. Abel-Tauber methoden en subordinatie van stochastische processen. Katholieke Universiteit Leuven (in Dutch, 1969).Google Scholar
(20)Westcott, M.The random record model. Proc. Roy. Soc. London A 356 (1977), 529547.Google Scholar
(21)Westcott, M.On the tail behaviour of recordtime distributions in a random record process. Ann. Probab. 7 (1979), 868873.Google Scholar