Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T08:36:38.528Z Has data issue: false hasContentIssue false

On small solutions of the general nonsingular quadratic Diophantine equation in five or more unknowns

Published online by Cambridge University Press:  24 October 2008

Daniel M. Kornhauser
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

Extract

Matijaseviê [7] showed in 1970 that the problem of deciding whether an arbitrary Diophantine equation has an integer solution is algorithmically unsolvable. However, in 1972, Siegel [10] provided an algorithm for all equations of degree two.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cassels, J. W. S.. Bounds for the least solutions of homogeneous quadratic equations. Proc. Cambridge Philos. Soc. 51 (1955), 262264Google Scholar
Cassels, J. W. S.. Bounds for the least solutions of homogeneous quadratic equations. Proc. Cambridge Philos. Soc. 52 (1956), 604.Google Scholar
[2]Cassels, J. W. S.. Rational Quadratic Forms (Academic Press, 1978).Google Scholar
[3]Estermann, T.. A new application of the Hardy–Littlewood–Kloosterman method. Proc. London Math. Soc. (3) 12 (1962), 425444.Google Scholar
[4]Crunewald, F. J. and Segal, D.. How to solve a quadratic equation in integers. Math. Proc. Cambridge Philos. Soc. 89 (1981), 15.Google Scholar
[5]Kornhauser, D. M.. On the size of the smallest solution to the general binary quadratic diophantine equation. Acta Arithmetica 54 (1993), (to appear).Google Scholar
[6]Kornhauser, D. M.. Bounds for the smallest integer solution of general quadratic equations. Ph.D. thesis, University of Michigan (1989).Google Scholar
[7]Matijaseviĉ, Ju. V.. Enumerable sets are diophantine. Dokl. Akad. Nauk SSSR 191 (1970), 279282 (Russian)Google Scholar
Matijaseviĉ, Ju. V.. English translation, Soviet Math. Dokl. 11 (1970), 354357.Google Scholar
[8]Sohinzel, A.. Integer points on conics. Comment Math. Prace Mat. 16 (1972), 133135 (see also 17 (1973), 305).Google Scholar
[9]Schur, I.. Einige Bemerkungen zu der vorstehenden Arbeit des Herrn G. Pólya: Uber die Verteilung der quadratischen Reste und Nichtreste. Nachr. Akad. Wiss. Göttingen Math. –Phys. Kl.ll 1918, 3036.Google Scholar
[10]Siegel, C. L.. Zur Theorie der quadratischen Formen. Nachr. Akad. Wiss. Göttingen Math. –Phys. Kl.ll 1972, 2146.Google Scholar
[11]Watson, G. L.. Bounded representations of integers by quadratic forms. Mathenlatika 4 (1957), 1724.CrossRefGoogle Scholar
[12]Watson, G. L.. Integral Quadratic Forms (Cambridge University Press, 1960).Google Scholar