No CrossRef data available.
Article contents
On Ptolemaic metric simplicial complexes
Published online by Cambridge University Press: 10 May 2010
Abstract
We show that under certain mild conditions, a metric simplicial complex which satisfies the Ptolemy inequality is a CAT(0) space. Ptolemy's inequality is closely related to inversions of metric spaces. For a large class of metric simplicial complexes, we characterize those which are isometric to Euclidean space in terms of metric inversions.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 149 , Issue 1 , July 2010 , pp. 93 - 104
- Copyright
- Copyright © Cambridge Philosophical Society 2010
References
REFERENCES
[BBI]Burago, D., Burago, Y. and Ivanov, S.A Course in Metric Geometry. Graduate Studies in Mathematics vol. 33 (American Mathematical Society, 2001).CrossRefGoogle Scholar
[BFW]Buckley, S. M., Falk, K. and Wraith, D. J.Ptolemaic spaces and CAT(0). Glasgow J. Math. 51 (2009), 301–314.CrossRefGoogle Scholar
[BH]Bridson, M. R. and Haefliger, A.Metric Spaces of Non-Positive Curvature (Springer-Verlag, 1999).CrossRefGoogle Scholar
[BHX]Buckley, S. M., Herron, D. and Xie, X.Metric space inversions, quasihyperbolic distance and uniform spaces. Indiana J. Math. 57 (2008), 837–890.Google Scholar
[C]Chavel, I.Riemannian Geometry: a Modern Introduction (Cambridge University Press, 1993).Google Scholar
[FLS]Foertsch, T., Lytchak, A. and Schroeder, V. Nonpositive curvature and the Ptolemy inequality. Int. Math. Res. Not. IMRN (2007), article ID rnm100, 15 pages.Google Scholar
[K]Kay, D. C. Ptolemaic metric spaces and the characterization of geodesics by vanishing metric curvature. PhD thesis. Michigan State University (1963).Google Scholar
[S]Schoenberg, I. J.A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal. Proc. Amer. Math. Soc. 3 (1952), 961–964.Google Scholar