Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T16:35:37.086Z Has data issue: false hasContentIssue false

On Primitive Prime Factors of an-bn

Published online by Cambridge University Press:  24 October 2008

A. Schinzel
Affiliation:
Trinity College, Cambridge

Extract

Let a, b be relatively prime integers with |a| > |b| > 0. For any integer n > 0, let π n denote the nth cyclotomic polynomial, denned by

where ζn is a primitive nth root of unity.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Aurifeuille, A., and Le Lasseur, H., See Lucas, E., Théorèmes d'arithmétique. Atti. R. Acad. Sc. Torino, 13 (18771878), 271284.Google Scholar
(2)Beeger, N. G. W. H., On a new quadratic form for certain cyclotomic polynomials. Nieuw Arch. Wisk. (2), 23 (1951), 249252.Google Scholar
(3)Bickmore, C. E., On the numerical factors of a n-1. Messenger of Math. (2) 25 (18951896), 144;Google Scholar
(3)Bickmore, C. E., On the numerical factors of a n-1. Messenger of Math. (2) 26 (18961897), 138.Google Scholar
(4)Birkhoff, G. D., and Vandiver, H. S., On the integral divisors of anbn. Ann. of Math. (2), 5 (1904), 173180.CrossRefGoogle Scholar
(5)Cunningham, A., Factorisation of and Messenger of Math. (2), 45 (1915), 4975.Google Scholar
(6)Dickson, L. E., History of the theory of numbers, 1 (Washington, 1919).Google Scholar
(7)Dirchlet, P. G. L., Vorlesungen über Zahlentheorie (4th ed.Braunschweig, 1894).Google Scholar
(8)Kanold, H. J., Sätze über Kreisteilungspolynome und ihre Anwendungen auf einige zahlentheoretische Probleme. Journal für Math., 187 (1950), 169172.Google Scholar
(9)Kraitchik, M., Décomposition dean+bn ben facteurs dans le cas oü nab est un carré parfait avec une table des décompositions numériques pour toutes les valeurs de a et b inférieures á 100 (Paris, 1922).Google Scholar
(10)Kraitchik, M., Recherches sur la Théorie des Nombres, 1 (Paris, 1924).Google Scholar
(11)Lucas, E., Sur la série réecurrente de Fermat. Bull. Bibl. Storia Sc. Mat. e Fis. 11 (1878), 783789.Google Scholar
(12)Lucas, E., Sur les formules de Cauchy et de Lejeune Dirichlet. Ass.Française pour l' Avanc. des Sci., Comptes Rendus, 7 (1878), 164‐173.Google Scholar
(13)Rotkiewicz, A., O liczbach postaci… Prace Mat. 5 (1961), 9599.Google Scholar
(14)Zsigmondy, K., Zur Theorie der Potenzreste. Monatsh. Math. 3 (1892), 265284.CrossRefGoogle Scholar