Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T05:00:26.113Z Has data issue: false hasContentIssue false

On nearly uniformly convex Banach spaces

Published online by Cambridge University Press:  24 October 2008

J. R. Partington
Affiliation:
Pembroke College, Cambridge

Extract

A real Banach space (X, ‖ · ‖) is said to be uniformly convex (UC) (or uniformly rotund) if for all ∈ > 0 there is a δ > 0 such that if ‖x| ≤ 1, ‖y‖ ≤ 1 and ‖x−y‖ ≥ ∈, then ‖(x + y)/2‖ ≤ 1− δ.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baernstein, A. IIOn reflexivity and summability. Studia. Math. 42 (1972), 9194.CrossRefGoogle Scholar
(2)Brunel, A. and Sucheston, L.On B-convex Banach spaces. Math. Systems Theory 7 (1974), 294299.CrossRefGoogle Scholar
(3)Day, M. M.Some more uniformly convex spaces. Bull. Amer. Math. Soc. 47 (1941), 504507.CrossRefGoogle Scholar
(4)Day, M. M.Normed linear spaces, 3rd ed. (Springer, 1972.)Google Scholar
(5)Huff, R.Banach spaces which are nearly uniformly convex. Rocky Mountain J. Maths. 10 (1980), 743749.Google Scholar
(6)Leonard, E.Banach sequence spaces. J. Math. Anal. Appl. 54 (1976), 245265.CrossRefGoogle Scholar
(7)McShane, E. J.Linear functionals on certain Banach spaces. Proc. Amer. Math. Soc. 1 (1950), 402408.CrossRefGoogle Scholar
(8)Partington, J. R.On the Banach-Saks property. Math. Proc. Cambridge Philos. Soc. 82 (1977), 369374.CrossRefGoogle Scholar
(9)Seifert, C. J.The dual of Baernstein's space and the Banach-Saks property. Bull. Acad. Pol. Sci. (Ser. Sci. Math. Astr. et Phys.) 26 (1978), 237239.Google Scholar
(10)Smith, M. A. and Turett, B.Rotundity inLebesgue-Bochner function spaces. Trans. Amer. Math. Soc. 257 (1980), 105118.CrossRefGoogle Scholar