No CrossRef data available.
Article contents
On motivic principal value integrals
Published online by Cambridge University Press: 01 November 2007
Abstract
Inspired by p-adic (and real) principal value integrals, we introduce motivic principal value integrals associated to multi-valued rational differential forms on smooth algebraic varieties. We investigate the natural question whether (for complete varieties) this notion is a birational invariant. The answer seems to be related to the dichotomy of the Minimal Model Program.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 143 , Issue 3 , November 2007 , pp. 543 - 555
- Copyright
- Copyright © Cambridge Philosophical Society 2007
References
REFERENCES
[1]Abramovich, D., Karu, K., Matsuki, K. and Włodarczyk, J.. Torification and factorization of birational maps. J. Amer. Math. Soc. 15 (2002), 531–572.CrossRefGoogle Scholar
[2]Aluffi, P.. Chern classes of birational varieties. Int. Math. Res. Not. 63 (2004), 3367–3377.CrossRefGoogle Scholar
[3]Arnold, V., Varchenko, A. and Goussein–Zadé, S.. Singularités des Applications Différentiables II (Editions Mir, Moscou, 1986).Google Scholar
[4]Batyrev, V.. Stringy Hodge numbers of varieties with Gorenstein canonical singularities. Proc. Taniguchi Symposium 1997. In Integrable Systems and Algebraic Geometry, Kobe/Kyoto 1997 (World Sci. Publ., 1999), 1–32.Google Scholar
[5]Bittner, F.. The universal Euler characteristic for varieties of characteristic zero. Compositio Math. 140 (2004), 1011–1032.CrossRefGoogle Scholar
[7]Denef, J.. On the degree of Igusa's local zeta function. Amer. J. Math. 109 (1987), 991–1008.CrossRefGoogle Scholar
[8]Denef, J.. Report on Igusa's local zeta function. Sém. Bourbaki 741, Astérisque 201/202/203 (1991), 359–386.Google Scholar
[9]Denef, J. and Jacobs, Ph.. On the vanishing of principal value integrals. C. R. Acad. Sci. Paris 326 (1998), 1041–1046.CrossRefGoogle Scholar
[10]Denef, J. and Loeser, F.. Motivic Igusa zeta functions. J. Alg. Geom. 7 (1998), 505–537.Google Scholar
[11]Denef, J. and Loeser, F.. Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135 (1999), 201–232.CrossRefGoogle Scholar
[12]Denef, J. and Loeser, F.. Geometry on arc spaces of algebraic varieties. Proceedings of the Third European Congress of Mathematics, Barcelona 2000. Progr. Math. 201 (Birkhäuser, 2001), 327–348.CrossRefGoogle Scholar
[13]Denef, J. and Meuser, D.. A functional equation of Igusa's local zeta function. Amer. J. Math. 113 (1991), 1135–1152.CrossRefGoogle Scholar
[14]Hales, T.. Can p-adic integrals be computed? Contributions to Automorphic Forms, Geometry, and Number Theory (Johns Hopkins University Press, Baltimore, MD, 2004), 313–329.Google Scholar
[15]Hales, T.. Orbital integrals are motivic. Proc. Amer. Math. Soc. 133 (2005), 1515–1525.CrossRefGoogle Scholar
[16]Hironaka, H.. Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79 (1964), 109–326.CrossRefGoogle Scholar
[17]Igusa, J.. Complex powers and asymptotic expansions I. J. Reine Angew. Math. 268/269 (1974), 110–130; II, ibid. 278/279 (1975), 307–321.Google Scholar
[18]Igusa, J.. Lectures on forms of higher degree. Tata Inst. Fund. Res. Stud. Math. (1978).Google Scholar
[19]Jacobs, Ph.. Real principal value integrals. Monatsh. Math. 130 (2000), 261–280.CrossRefGoogle Scholar
[20]Jacobs, Ph.. The distribution |f|λ, oscillating integrals and principal value integrals. J. Anal. Math. 81 (2000), 343–372.CrossRefGoogle Scholar
[21]Kollár, J. and Mori, S.. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics 134 (Cambridge University Press, 1998).Google Scholar
[23]Laeremans, A.. The distribution |f|s, topological zeta functions and Newton polyhedra. Ph. D. thesis (Univ. Leuven, 1997).Google Scholar
[24]Langlands, R.. Orbital integrals on forms of SL(3), I. Amer. J. Math. 105 (1983), 465–506.CrossRefGoogle Scholar
[25]Langlands, R.. Remarks on Igusa theory and real orbital integrals. The Zeta Functions of Picard Modular Surfaces (Les Publications CRM, Montréal; distributed by AMS, 1992), pp. 335–347.Google Scholar
[27]Langlands, R. and Shelstad, D.. On principal values on p–adic manifolds. Lect. Notes Math. 1041 (Springer, 1984).Google Scholar
[28]Langlands, R. and Shelstad, D.. Orbital integrals on forms of SL(3), II. Canad. J. Math. 41 (1989), 480–507.CrossRefGoogle Scholar
[29]Matsuki, K.. Introduction to the Mori Program, Universitext (Springer-Verlag, 2002).CrossRefGoogle Scholar
[30]Poonen, B.. The Grothendieck ring of varieties is not a domain. Math. Res. Letters 9 (2002), 493–498.CrossRefGoogle Scholar
[31]Veys, W.. Poles of Igusa's local zeta function and monodromy. Bull. Soc. Math. France 121 (1993), 545–598.CrossRefGoogle Scholar
[32]Veys, W.. Zeta functions and ‘Kontsevich invariants' on singular varieties. Canad. J. Math. 53 (2001), 834–865.CrossRefGoogle Scholar
[33]Veys, W.. Stringy zeta functions of Qopf–Gorenstein varieties. Duke Math. J. 120 (2003), 469–514.CrossRefGoogle Scholar
[34]Veys, W.. Arc spaces, motivic integration and stringy invariants. Advanced Studies in Pure Mathematics 43 (2006), 529–572. Proceedings of “Singularity theory and its applications, Sapporo (Japan), 16–25 September 2003”.Google Scholar
[35]Wang, C.-L.. On the topology of birational minimal models. J. Differential Geom. 50 (1998), 129–146.CrossRefGoogle Scholar
[36]Włodarczyk, J.. Combinatorial structures on toroidal varieties and a proof of the weak factorization theorem. Invent. Math. 154 (2003), 223–331.CrossRefGoogle Scholar