Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T04:15:42.775Z Has data issue: false hasContentIssue false

On decomposition numbers and Alvis–Curtis duality

Published online by Cambridge University Press:  01 November 2007

BERND ACKERMANN
Affiliation:
Inst.f.Algebra u.Zahlentheorie, Universität Stuttgart, 70550 Stuttgart, Germany. email: [email protected]
SIBYLLE SCHROLL*
Affiliation:
Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB. email: [email protected]
*
The second author acknowledges support through a Marie Curie Fellowship.

Abstract

We show that for general linear groups GLn(q) as well as for q-Schur algebras the knowledge of the modular Alvis–Curtis duality over fields of characteristic ℓ, ℓ ∤ q, is equivalent to the knowledge of the decomposition numbers.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anderson, F. W. and Fuller, K. R.. Rings and categories of modules, second edition. Graduate Texts in Mathematics, 13 (Springer-Verlag, 1992).CrossRefGoogle Scholar
[2]Broué, M.. Isométries parfaites, types de blocs, catégories dérivées. Astérisque 181–182 (1990), 6192.Google Scholar
[3]Brundan, J.. Modular branching rules and the Mullineux map for Hecke algebras of type A. Proc. London Math. Soc. (3) 77 (1998), no. 3, 551581.CrossRefGoogle Scholar
[4]Brundan, J., Dipper, R. and Kleshchev, A.. Quantum linear groups and representations of Gl n(Fq). Mem. Amer. Math. Soc. 706.Google Scholar
[5]Carter, R.. Finite Groups of Lie Type (Wiley, 1985).Google Scholar
[6]Cabanes, M. and Rickard, J.. Alvis–Curtis duality as an equivalence of derived categories. Modular representation theory of finite groups (Charlottesville, VA, 1998), 157–174 (de Gruyter, 2001).CrossRefGoogle Scholar
[7]Dipper, R.. On the decomposition numbers of finite general linear groups II. Trans. Amer. Math. Soc. 292 (1985), 1, 123133.CrossRefGoogle Scholar
[8]Dipper, R. and James, G.. Representations of Hecke algebras of general linear groups. Proc. London Math. Soc. (3) 52 (1986), no. 1, 2052.CrossRefGoogle Scholar
[9]Dipper, R. and James, G.. The q-Schur algebra. Proc. London Math. Soc. (3) 59 (1989) 2350.CrossRefGoogle Scholar
[10]Donkin, S.. The q-Schur Algebra. LMS Lecture Note Series 253 (Cambridge University Press, 1998).CrossRefGoogle Scholar
[11]Fayers, M.. Decomposition numbers for weight three blocks of symmetric groups and Iwahori–Hecke algebras. Trans. Amer. Math. Soc., to appear.Google Scholar
[12]Fong, P. and Srinivasan, B.. The blocks of finite general linear and unitary groups. Invent. Math. 69 (1982), 1, 109153.CrossRefGoogle Scholar
[13]Green, J. A.. The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80 (1955), 402447.CrossRefGoogle Scholar
[14]Iwahori, N.. On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215236.Google Scholar
[15]James, G. D.. Representations of General Linear Groups. LMS Lecture Note Series 94 (Cambridge University Press, 1984).CrossRefGoogle Scholar
[16]James, G. D.. The irreducible representations of the finite general linear groups. Proc. London Math. Soc. (3) 52 (1986), 236268.CrossRefGoogle Scholar
[17]James, G. D.. The decomposition matrices of GL n(q) for n ≤ 10. Proc. London Math. Soc. (3) 60 (1990), 225265.CrossRefGoogle Scholar
[18]James, G. D., Lyle, S. and Mathas, A.. Rouquier blocks. Math. Z. 252 (2006), 511531.CrossRefGoogle Scholar
[19]Linckelmann, M.. and Schroll, S.. A two-sided q-analogue of the Coxeter complex. J. Algebra (1) 289 (2005), 128134.CrossRefGoogle Scholar
[20]Miyachi, H.. Some remarks on James' conjecture. Preprint (2001).Google Scholar
[21]Miyachi, H.. Unipotent block of finite general linear groups in non-defining characteristic, Ph.D. thesis. (Chiba University, 2001).Google Scholar
[22]Mullineux, G.. Bijections of p-regular partitions and p-modular irreducibles of the symmetric group. J. Algebra 34 (1979), 6066.Google Scholar
[23]Rickard, J.. Derived equivalences as derived functors. J. London Math. Soc. (2) 43 (1991), no. 1, 3748.CrossRefGoogle Scholar
[24]Schroll, S.. On the Alvis–Curtis duality and general linear groups. Ph. D. thesis. (Université Paris 13, 2003).Google Scholar
[25]Schroll, S.. Alvis–Curtis duality on q-Schur and Hecke algebras. Q. J. Math. 58 (2007), no. 2.CrossRefGoogle Scholar
[26]Takeuchi, M.. The group ring of GL sb n(q) and the q-Schur algebra. J. Math. Soc. Japan 48 (1996), 2, 259274.CrossRefGoogle Scholar
[27]Tan, K. M.. Some decomposition numbers of q-Schur algebras. Preprint (2005).Google Scholar