Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T07:33:56.579Z Has data issue: false hasContentIssue false

On Contractible Open Manifolds

Published online by Cambridge University Press:  24 October 2008

D. R. McMillan
Affiliation:
Florida State University
E. C. Zeeman
Affiliation:
Gonville and Caius CollegeCambridge

Extract

By an open manifold we mean a non-compact space, that is triangulable by a countable complex which is a combinatorial manifold without boundary (see next section).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Curtis, M. LCartesian products with intervals. Proc. American Math. Soc. 12 (1961), 819820.CrossRefGoogle Scholar
(2)Mazur, B.A note on some contractible 4-manifolds. Ann. of Math. 73 (1961), 221228.CrossRefGoogle Scholar
(3)McMillan, D. R Jr., Cartesian products of contractible open manifolds. Bull. American Math. Soc. 67 (1961), 510514.CrossRefGoogle Scholar
(4)McMillan, D. R Jr., Some contractible open 3-manifolds (to appear).Google Scholar
(5)Newman, M. H. A.On the superposition of n−dimensional manifolds. J. London Math. Soc. 2 (1927), 5664.CrossRefGoogle Scholar
(6)Newman, M. H. A.Boundaries of ULC sets in euclidean n−space. Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 193196.CrossRefGoogle ScholarPubMed
(7)Poenaru, V.Les décompositions de l'hypercube en produit tolologique. Bull. Soc. Math. France, 88 (1960), 113129.Google Scholar
(8)Poenaru, V.Sur quelques propriétés des variétés simplement connexes à trois dimensions. Rend. Mat. e Appl. 20 (1961) 235269.Google Scholar
(9)Whitehead, J. H. C.A certain open manifold whose group is unity. Quart. J. Math. Oxford Ser. (1), 6 (1935), 268279.CrossRefGoogle Scholar
(10)Whitehead, J. H. C.Simplicial spaces, nuclei and m groups. Proc. London Math. Soc. 45 (1939), 243327.CrossRefGoogle Scholar
(11)Zeeman, E. C On polyhedral manifolds (to appear).Google Scholar
(12)Zeeman, E. C Isotopies of manifolds (to appear).Google Scholar