Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T19:44:10.287Z Has data issue: false hasContentIssue false

On arithmetic progressions of equal lengths with equal products

Published online by Cambridge University Press:  24 October 2008

N. Saradha
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
T. N. Shorey
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
R. Tijdeman
Affiliation:
Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract

It is shown that apart from

there are only finitely many arithmetic progressions with given differences of equal lengths ≥ 2 and with equal products and that they can be effectively determined.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Erdős, P.. On consecutive integers. Nieuw Arch. Wiskunde, Ser. 3 3 (1955), 124128.Google Scholar
[2]Erdős, P.. On the product of consecutive integers III. Indag. Math. 17 (1955), 8590.CrossRefGoogle Scholar
[3]Gabovič, Ya.. On the arithmetic progressions with equal products of terms (Russian), Colloq. Math. 15 (1966), 4548.Google Scholar
[4]P, Problèmes543 et P 545, R1. Colloq. Math. 19 (1968), 179180.Google Scholar
[5]Saradha, N. and Shorey, T. N.. On the equation (x + 1) … (x + k) = (y + 1) … (y + mk), Indag. Math. N.S. 3 (1992), 7990.CrossRefGoogle Scholar
[6]Saradha, N. and Shorey, T. N.. On the equations x(x + d) … (x + (k – 1)d) = y(y + d) … (y + (mk – 1)d), Indag. Math. N.S. 3 (1992), 237242.CrossRefGoogle Scholar
[7]Saradha, N. and Shorey, T. N.. On the equation x(x + d 1) … (x+(k – 1)d 1) = y(y + d 2) … (y + (mk – 1)d 2), Proc. Indian Acad. Sei. (Math. Sci.) 104 (1994), 112.CrossRefGoogle Scholar
[8]Shorey, T. N.. On the ratio of values of a polynomial. Proc. Indian Acad. Sei. (Math. Sci.) 93, (1984), 106116.Google Scholar
[9]Störmer, C.. Quelques théorèmes sur l'équation de Pell x 2dy 2 = ± 1 et leurs applications. Vid. Skr. I. Math. Natur. Kl. (Christiana) 1897 No. 2, 48 pp.Google Scholar