Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T22:13:56.004Z Has data issue: false hasContentIssue false

On a problem of Erdős concerning decompositions of the plane

Published online by Cambridge University Press:  24 October 2008

Roy O. Davies
Affiliation:
University of Leicester

Extract

Sierpiński ((6), (7)) proved that the continuum hypothesis implies the following proposition:

Euclidean space E3 can be decomposed into three sets Si (i = 1, 2, 3) such that, for some three straight lines Di in E3, the intersection of each line parallel to Di with the corresponding set Si is finite.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bagemihl, F.A proposition of elementary plane geometry that implies the continuum hypothesis. Z. Math. Logik Grundlagen Math. 7 (1961), 7779.CrossRefGoogle Scholar
(2)Davies, Roy O.Equivalence to the continuum hypothesis of a certain proposition of elementary plane geometry. Z. Math. Logik Grundlagen Math. 8 (1962), 109111.CrossRefGoogle Scholar
(3)Davies, Roy O.The power of the continuum and some propositions of plane geometry. Fund. Math, (to appear).Google Scholar
(4)Davies, Roy O.Covering the plane with denumerably many curves. J. London Math. Soc. (to appear).Google Scholar
(5)Erdős, P.Some remarks on set theory. IV. Michigan Math. J. 2 (19531954), 169173.Google Scholar
(6)Sierpiński, W.Sur quelques propositions concernant la puissance du continu. Fund. Math. 38 (1951), 113.CrossRefGoogle Scholar
(7)Sierpiński, W.Sur une propriété paradoxale de l'espace à trois dimensions équivalente à l'hypothèse du continu. Rend. Circ. Mat. Palermo (2), 1 (1952), 710.CrossRefGoogle Scholar