Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T13:47:41.678Z Has data issue: false hasContentIssue false

On a generalization of Barton's integral and related integrals of complete elliptic integrals

Published online by Cambridge University Press:  24 October 2008

P. J. Bushell
Affiliation:
School of Mathematical and Physical Sciences, University of Sussex

Extract

Let K(k) and E(k) denote respectively the complete elliptic integrals of the first and second kind with modulus k, as defined by Byrd and Friedman ([5] 110·06 and 110·07), and let k′ = √(1 − k2), the complementary modulus.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abramowitz, M. and Stegun, I. A. (eds.). Pocket Book of Mathematical Functions (Deutsch, 1984).Google Scholar
[2]Babister, A. W.. Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations (MacMillan, 1967).Google Scholar
[3]Barton, G.. Do attractive scattering potentials concentrate particles at the origin in one, two and three dimensions? III: High energies in quantum mechanics. Proc. R. Soc. London A 388 (1983), 445456.Google Scholar
[4]Berndt, B. C.. Ramanujan's Notebooks, Part I (Springer, 1985).CrossRefGoogle Scholar
[5]Byrd, P. F. and Friedman, M. D.. Handbook of Elliptic Integrals for Engineers and Scientists (Springer, 1971).Google Scholar
[6]Kaplan, E. L.. Multiple elliptic integrals. J. of Math. and Physics 29 (1950), 6975.Google Scholar
[7]Luke, Y. L.. Mathematical Functions and their Approximations (Academic Press, 1975).Google Scholar
[8]Müller, K. F.. Berechnung der Induktivität Spulen. Archiv für Elektrotechnik 17 (1926), 336353.Google Scholar
[9]Slater, L. J.. Hypergeometric Functions (Cambridge University Press, 1966).Google Scholar