Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T14:27:09.655Z Has data issue: false hasContentIssue false

On a conjecture of Hughes

Published online by Cambridge University Press:  24 October 2008

Judita Cofman
Affiliation:
Imperial College, London

Extract

D. R. Hughes stated the following conjecture: If π is a finite projective plane satisfying the condition: (C)π contains a collineation group δ inducing a doubly transitive permutation group δ* on the points of a line g, fixed under δ, then the corresponding affine plane πg is a translation plane.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)André, J.Über Perspektivitäten in endlichen projektiven Ebenen. Arch. Math. 6 (1954), 2932.Google Scholar
(2)Baer, R.Projectivities with fixed points on every line of the plane. Bull. Amer. Math. Soc. 52 (1946), 273286.CrossRefGoogle Scholar
(3)Burnside, W.Theory of groups of finite order (New York; Dover Publ. 1955).Google Scholar
(4)Cofman, J.On a characterization of finite desarguesian projective planes. Arch. Math. 17 (1966), 200205.Google Scholar
(5)Dickson, L. E.Linear groups (New York; Dover Publ., 1958).Google Scholar
(6)Gleason, A. M.Finite Fano planes. Amer. J. Math. 78 (1956), 797807.CrossRefGoogle Scholar
(7)Gorenstein, D.The classification of finite groups with dihedral Sylow 2-subgroups. Symposium on Group Theory, pp. 1015 (Harvard, 1963).Google Scholar
(8)Lüneburg, H.Charakterisierungen der endlichen desarguesschen projektiven Ebenen. Math. Z. 85 (1964), 419450.Google Scholar
(9)Lüneburg, H. Über projektive Ebenen, in denen jede Fahne von einer nicht-trivialen Elation invariant gelassen wird. To appear in Abh. Math. Sem. Univ. Hamburg.Google Scholar
(10)Ostrom, T. G.Double transitivity in finite projective planes. Canad. J. Math. 8 (1956), 563567.Google Scholar
(11)Schur, I.Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene Substitutionen. J. Seine Angew. Math. 132 (1907), 85137.Google Scholar
(12)Tits, J.Ovoides et groupes de Suzuki. Arch. Math. 13 (1962), 187198.CrossRefGoogle Scholar
(13)Wielandt, H.Finite permutation groups (Academic Press; New York and London, 1964).Google Scholar