Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:32:40.221Z Has data issue: false hasContentIssue false

Number fields without n-ary universal quadratic forms

Published online by Cambridge University Press:  08 June 2015

VALENTIN BLOMER
Affiliation:
Mathematisches Institut, Bunsenstr. 3-5, D-37073 Göttingen, Germany. e-mail: [email protected]; [email protected]
VÍTĚZSLAV KALA
Affiliation:
Mathematisches Institut, Bunsenstr. 3-5, D-37073 Göttingen, Germany. e-mail: [email protected]; [email protected]

Abstract

Given any positive integer M, we show that there are infinitely many real quadratic fields that do not admit universal quadratic forms with even cross coefficients in M variables.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Bh] Bhargava, M. On the Conway–Schneeberger fifteen theorem. Contemp. Math. 272 (1999), 2737.Google Scholar
[CKR] Chan, W. K., Kim, M.-H. and Raghavan, S. Ternary universal integral quadratic forms. Japan. J. Math. 22 (1996), 263273.Google Scholar
[Fr] Friesen, C. On continued fractions of given period. Proc. Amer. Math. Soc. 103 (1988), 814.Google Scholar
[HW] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th edition (The Clarendon Press, Oxford University Press, New York, 1979).Google Scholar
[IK] Iwaniec, H. and Kowalski, E. Analytic Number Theory. AMS Colloquium Publications 53 (Providence, RI, 2004).Google Scholar
[Ki1] Kim, B. M. Finiteness of real quadratic fields which admit positive integral diagonal septenary universal forms. Manuscr. Math. 99 (1999), 181184.Google Scholar
[Ki2] Kim, B. M. Universal octonary diagonal forms over some real quadratic fields. Comment. Math. Helv. 75 (2000), 410414.Google Scholar
[Li] Littlewood, J. E. On the class-number of the corpus $P(\sqrt{-k})$ . Proc. Lond. Math. Soc. 27 (1928), 358372.Google Scholar
[Ma] Madden, D. Constructing families of long continued fractions. Pacific J. Math. 198 (2001), 123147.Google Scholar
[Ro] Ross, A. E. On representation of integers by quadratic forms. Proc. Nat. Acad. Sci. 18 (1932), 600608.Google Scholar
[Si] Siegel, C. L. Sums of mth powers of algebraic integers. Ann. Math. 46 (1945), 313339.Google Scholar