Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:26:41.605Z Has data issue: false hasContentIssue false

Notes on weak units of group-like 1- and 2-stacks

Published online by Cambridge University Press:  09 November 2016

ETTORE ALDROVANDI
Affiliation:
Department of Mathematics, Florida State University, 1017 Academic Way Tallahassee, FL 32312-4510, U.S.A. e-mail: [email protected]
A. EMIN TATAR
Affiliation:
Department of Mathematics and Statistics, KFUPM, Dhahran, 31261, Saudi Arabia. e-mail: [email protected]

Abstract

The weak units of strict monoidal 1- and 2-categories are defined respectively in [15] and [14]. In this paper, we define them for group-like 1- and 2-stacks. We show that they form a contractible Picard 1- and 2-stack, respectively. We give their cohomological description which provides for these stacks a representation by complexes of sheaves of groups. Later, we extend the discussion to the monoidal case. We consider the (2-)substack of cancelable objects of a monoidal 1-(2-)stack. We observe that this (2-)substack is trivially group-like, its weak units are the same as the weak units of the monoidal 1-(2-)stack, and therefore we can recover the contractibility results in [15] and [14] by analysing it.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aldrovandi, E. 2-gerbes bound by complexes of gr-stacks, and cohomology. J. Pure Appl. Algebra 212 (5) (2008), 9941038.Google Scholar
[2] Aldrovandi, E. and Noohi, B. Butterflies III: higher butterflies and higher gr-stacks. In Preparation.Google Scholar
[3] Aldrovandi, E. and Noohi, B. Butterflies I: morphisms of 2-group stacks. Adv. Math. 221 (3) (2009), 687773.Google Scholar
[4] Aldrovandi, E. and Tatar, A. E. Cohomology and coherence. In preparation.Google Scholar
[5] Bertolin, C. and Tatar, A. E. Resolution of extensions of picard 2-stacks. arXiv:1401.6685 (2014).Google Scholar
[6] Breen, L. Bitorseurs et cohomologie non abélienne. In The Grothendieck Festschrift, Vol. I, Progr. Math. vol. 86. (Birkhäuser Boston, Boston, MA, 1990), pp. 401476.Google Scholar
[7] Breen, L. Théorie de Schreier supérieure. Ann. Sci. École Norm. Sup. (4), 25 (5) (1992), 465514.Google Scholar
[8] Breen, L. On the classification of 2-gerbes and 2-stacks. Astérisque 225 (1994), 160.Google Scholar
[9] Conduché, D. Simplicial crossed modules and mapping cones. Georgian Math. J. 10 (4) (2003), 623636.Google Scholar
[10] Conduché, D. Modules croisés généralisés de longueur 2. In Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983) vol. 34 (1984), pp. 155178.Google Scholar
[11] Deligne, P. La formule de dualité globale, 1973. SGA 4 III, Exposé XVIII.Google Scholar
[12] Deligne, P. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII (Amer. Math. Soc., Providence, R.I., 1979), pp. 247289.Google Scholar
[13] Hakim, M. Topos Annelés et Schémas Relatifs (Springer-Verlag, Berlin, 1972). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64.CrossRefGoogle Scholar
[14] Joyal, A. and Kock, J. Coherence for weak units. Doc. Math. 18 (2013), 71110.CrossRefGoogle Scholar
[15] Kock, J. Elementary remarks on units in monoidal categories. Math. Proc. Camb. Phil. Soc. 144 (1) (2008), 5376.Google Scholar
[16] Noohi, B. On weak maps between 2-groups (2005).Google Scholar
[17] Norrie, K. Actions and automorphisms of crossed modules. Bull. Soc. Math. France 118 (2) (1990), 129146.Google Scholar
[18] Saavedra Rivano, N. Catégories Tannakiennes. Lecture Notes in Mathematics vol. 265 (Springer-Verlag, Berlin, 1972).Google Scholar