No CrossRef data available.
Article contents
A note on the polynomial Freĭman–Ruzsa conjecture over ℤ
Published online by Cambridge University Press: 10 November 2017
Abstract
The polynomial Freĭman–Ruzsa conjecture over the integers is often phrased in terms of convex progressions. We give an alternative, apparently stronger formulation in terms of the more restrictive “ellipsoid progressions”, and show that these formulations are in fact equivalent. The key input to the equivalence proof comes from strong results in asymptotic convex geometry.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 166 , Issue 2 , March 2019 , pp. 243 - 245
- Copyright
- Copyright © Cambridge Philosophical Society 2017
References
REFERENCES
[GM04] Giannopoulos, A. A. and Milman, V. D. Asymptotic convex geometry: short overview. In Different faces of geometry Int. Math. Ser. (N. Y.) vol. 3 (Kluwer/Plenum, New York, 2004), pages 87–162.Google Scholar
[LR17] Lovett, S. and Regev, O. A counterexample to a strong variant of the polynomial Freiman–Ruzsa conjecture in Euclidean space. Discrete Anal., pages Paper No. 8, 6 (2017).Google Scholar
[Mil86] Milman, V. D. Inégalité de Brunn–Minkowski inverse et applications à la théorie locale des espaces normés. C. R. Acad. Sci. Paris Sér. I Math. 302 (1) (1986), 25–28.Google Scholar