Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:01:55.086Z Has data issue: false hasContentIssue false

A note on the distributional Stieltjes transformation

Published online by Cambridge University Press:  24 October 2008

Arpad Takači
Affiliation:
Institute of Mathematics, Novi Sad, Yugoslavia

Extract

In this note we use the notion of the quasiasymptotic behaviour of distributions (introduced in [2]) in order to obtain a final value Abelian theorem for the distributional Stieltjes transformation. At the end of the note we give a few examples in which two different concepts of the asymptotic behaviour of distributions are compared.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Carmichael, R. D. and Milton, E. O.. Abelian Theorems for the distributional Stieltjes transform. J. Math. Anal. Appl. 72 (1979), 195205.Google Scholar
[2] Drožžinov, Ju. N. and Zav´Jalov, B. I.. The quasiaaymptotic behaviour of generalized functions and Tauberian theorems in a complex domain (ìn Russian). Mat. Sb. 102 (1977), 372390.Google Scholar
[3] Drožžinov, Ju. N. and Zav´Jalov, B. I.. Tauberian theorems for generalized functions with supports in a cone (in Russian). Mat. Sb. 108 (1979) 7890.Google Scholar
[4] Lavione, J. and Misra, O. P.. Théorémes abéliens pour la transformation de Stieltjes des distributions. C. R. Acad. Sci. Paria, Série A 279 (1974), 99102.Google Scholar
[5] Lavoine, J. and Misra, O. P.. Abelian theorems for the distributional Stieltjes transformation. Math. Proc. Cambridge Philos. Soc. 86 (1979), 287293.CrossRefGoogle Scholar
[6] Lavoine, J. and Misra, O. P.. Sur la transformation de Stieltjes des distributions et son inversion au moyen de la transformation de Laplace. C. R. Acad. Sci. Paris, Série A 290 (1980), 139142.Google Scholar