Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T07:44:18.284Z Has data issue: false hasContentIssue false

A note on integral integer-valued functions of several variables

Published online by Cambridge University Press:  24 October 2008

A. Baker
Affiliation:
Trinity College, Cambridge

Extract

1. The consequences of assuming that an integral function or its derivatives take integer values for some or all integer values of the variable have been widely investigated. The best-known result of this kind was obtained by Pólya(9,10) and Hardy(6) in 1920 and states that among all transcendental integral functions which assume integer values for all non-negative integer values of the variable that of least increase is the function 2Z (cf. also (7)). Analogous results relating to integers in the Gaussian field were proved by Fukasawa(3)in 1926 and Gelfond(4)in 1929, and theorems relating to the function and its derivatives are included in the works of Gelfond (5), Selberg(14) and Straus (15). (For further results and references see (1,2, 11).) The earlier of these investigations may be regarded as the genesis of the celebrated Gelfond-Schneidersolution to the seventh problem of Hilbert and the much important work arising therefrom.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Boas, R. P. Jr. Entire functions (New York, 1954).Google Scholar
(2)Buck, R. Creighton. Integral valued entire functions. Duke Math. J. 15 (1948), 879891.CrossRefGoogle Scholar
(3)Fukasawa, S.Über ganzwertige ganze Funktionen. Tôhoku Math. J. 27 (1926), 4152.Google Scholar
(4)Gelfond, A. O.Sur les propriétés arithmétiques des fonctions entières. Tôhoku Math. J. 30 (1929), 280285.Google Scholar
(5)Gelfond, A. O.Sur un théorème de M. G. Pólya. Atti Reale Accad. Naz. Lincei X (1929), 569574.Google Scholar
(6)Hardy, G. H.On a theorem of Mr G. Pó1ya. Proc. Cambridge Philos. Soc. 19 (1920), 6063.Google Scholar
(7)Landau, E.On Mr Hardy's extension of a theorem of Mr Pó1ya. Proc. Cambridge Philos. Soc. 20 (1920), 1415.Google Scholar
(8)Lang, S.Algebraic values of meromorphic functions. Topology 3 (1965), 183191.CrossRefGoogle Scholar
(9)Pólya, G.Ueber ganzwertige ganze Funktionen. Rend. Circ. Mat. Palermo 40 (1915), 116.CrossRefGoogle Scholar
(10)Pólya, G.Über ganze ganzwertige Funktionen. Göttingen Nachrichten (1920), 110.Google Scholar
(11)Sato, D. and Straus, E. G.Rate of growth of Hurwitz entire functions and integer valued entire functions. Bull. Amer. Math. Soc. 70 (1964), 303307.CrossRefGoogle Scholar
(12)Schneider, Th.Zur Theorie der Abelschen Funktionen und Integrate. J. Reine Angew. Math. 183 (1941), 110128.CrossRefGoogle Scholar
(13)Schneider, Th.Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweise. Math. Ann. 121 (1949), 131140.Google Scholar
(14)Selberg, A.Über einen Satz von A. Gelfond. Arch. Math. Naturvid. 44 (1941), 159170.Google Scholar
(15)Straus, E. G.On entire functions with algebraic derivatives at certain algebraic points. Ann. of Math. (2), 52 (1950), 188198.CrossRefGoogle Scholar