Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T07:44:05.248Z Has data issue: false hasContentIssue false

A note on annihilator Banach algebras

Published online by Cambridge University Press:  24 October 2008

S. Giotopoulos
Affiliation:
Department of Mathematics, University of Athens, 157 81 Athens, Greece

Extract

The purpose of this note is to present simple proofs of the basic results concerning semi-simple annihilator Banach algebras as well as new results (for terminology notation and the standard approach see [2]).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alexander, J. C.. Compact Banach algebras. Proc. London Math. Soc. (3) 18 (1968), 119.CrossRefGoogle Scholar
[2]Bonsall, F. F. and Duncan, J.. Complete normed algebras (Springer-Verlag, 1973).CrossRefGoogle Scholar
[3]ErdOS, J. A.. On certain elements of C*-algebras. Illinois J. Math. 15 (1971), 682697.CrossRefGoogle Scholar
[4]Erdos, J. A., Giotopoulos, S. and Lambrou, M.. Rank one elements of Banach algebras. Mathematika 24 (1977), 176181.CrossRefGoogle Scholar
[5]Lambrou, M. S.. Automatic continuity and implementation of holomorphisms, preprint 1982 (Univ. of Crete, Iraklion, Crete, Greece).Google Scholar
[6]Moore, R. L.. Isomorphisms of certain CSL algebra, preprint (Univ. of Alabama, University, AL35486).Google Scholar
[7]Ringrose, J. R.. On some algebras of operators. Proc. London Math. Soc. (3) 15 (1965), 6183.CrossRefGoogle Scholar
[8]Ringrose, J. R.. On some algebras of operators II. Proc. London Math. Soc. (3) 16 (1966), 385402.CrossRefGoogle Scholar