Article contents
Norms of cyclotomic Littlewood polynomials
Published online by Cambridge University Press: 24 February 2005
Abstract
The main result of this paper gives an explicit computation of the $L_4$ norm of any cyclotomic polynomial of the form \[ f(x)=\Phi_{p_1}(\pm x)\Phi_{p_2}(\pm x^{p_1})\cdots \Phi_{p_r}(\pm x^{p_1 p_2\cdots p_{r-1}}). \] Here $\Phi_{p}$ is the $p$th cyclotomic polynomial and the $p_i$ are primes that are not necessarily distinct.
A corollary of this is the following theorem.
THEOREM. If\[ f(x)=\Phi_{p_1}(\e_1 x)\Phi_{p_2}(\e_2 x^{p_1})\cdots \Phi_{p_r}(\e_r x^{p_1 p_2\cdots p_{r-1}}), \]where N = p1p2···prand εj = ±, then \[ \frac{\| f\|_4^4}{N^2} & \ge & \frac{\big\|\Phi_2(-x)\Phi_2(-x^2)\cdots \Phi_2\big({-}x^{2^{r-1}}\big) \big\|_4^4}{4^r}\\& = & \frac{\big(\frac12 +\frac{5}{34}\sqrt{17}\big)(1+\sqrt{17})^r - \big({-}\frac12 +\frac{5}{34}\sqrt{17}\big)(1-\sqrt{17})^r}{4^r}. \] In particular the minimum possible normalized L4 norm of any polynomial of the above form is attained by \[ \Phi_2(-x)\Phi_2(-x^2)\cdots \Phi_2\big({-}x^{2^{r-1}}\big). \]
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 138 , Issue 2 , March 2005 , pp. 315 - 326
- Copyright
- 2005 Cambridge Philosophical Society
- 6
- Cited by