Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T23:26:49.575Z Has data issue: false hasContentIssue false

The non-existence of odd primary Arf invariant elements in stable homotopy

Published online by Cambridge University Press:  24 October 2008

Douglas C. Ravenel
Affiliation:
University of Washington, Seattle

Extract

In this paper we will show that certain elements of order p (p an odd prime) on the 2-line of the Adams-Novikov spectral sequence support non-trivial differentials and therefore do not detect elements in the stable homotopy groups of spheres. These elements are analogous to the so-called Arf invariant elements of order 2, hence the title. However, it is evident that the methods presented here do not extend to the prime 2.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Adams, J. F.On the non-existence of elements of Hopf invariant one. Ann. of Math. 72 (1960), 20104.CrossRefGoogle Scholar
(2)Adams, J. F.Stable homotopy and generalized homology (University of Chicago Press, 1974).Google Scholar
(3)Adams, J. F.On the structure and applications of the Steenrod algebra. Comm. Math. Helv. 32 (1958), 180214.CrossRefGoogle Scholar
(4)Barratt, M. G. and Mahowald, M. E. The Arf invariant in dimension 62. (To appear.)Google Scholar
(5)Browder, W.The Kervaire invariant of framed manifolds and its generalizations. Ann. of Math. 90 (1969), 157186.CrossRefGoogle Scholar
(6)Brown, E. H. and Peterson, F. P.A spectrum whose Zp-cohomology is the algebra of reduced p-ih powers. Topology 5 (1966), 149154.CrossRefGoogle Scholar
(7)Fröhlich, A.Formal groups (Lecture Notes in Mathematics, vol. 74, Springer-Verlag, 1968).CrossRefGoogle Scholar
(8)Hilton, P. J. and Stammbach, U.A course in homological algebra (Springer-Verlag, 1971).CrossRefGoogle Scholar
(9)Johnson, D. C., Miller, H. B., Wilson, W. S. and Zahler, R. S. Boundary hoinomor-phism in the generalized Adams spectral sequence and the nontriviality of infinitely many Yt in stable homotopy. Notas de Matematicas y Simposia, no. 1, pp. 4759. (Soc. Mat. Mexicana, 1975.)Google Scholar
(10)Landweber, P. S.BP*(BP) and typical formal groups. Osaka J. Math, 12 (1975), 357363.Google Scholar
(11)Liulevicrus, A.The factorization of cyclic reduced powers by secondary cohomology operations. Mem. Amer. Math. Soc. 42 (1962).Google Scholar
(12)Mahowald, M. E.A new infinite family in 2π3*. Topology 16 (1977), 249256.CrossRefGoogle Scholar
(13)May, J. P.A general algebraic approach to Steenrod operations (Lecture Notes in Mathe-matics, vol. 168, Berlin: Springer-Verlag, 1970).Google Scholar
(14)May, J. P.Matric Massey products. J. Algebra 12 (1969), 533568.CrossRefGoogle Scholar
(15)May, J. P. The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra. Thesis, Princeton University (1964).Google Scholar
(16)Milgram, B. J.Symmetries and operations in homotopy theory. Amer. Math. Soc. Proc. Symposia Pure Math. 22 (1971), 203211.CrossRefGoogle Scholar
(17)Miller, H. R. Hopf algebroids. (To appear.)Google Scholar
(18)Miller, H. R. and Ravenel, D. C.Morava stabilizer algebras and the location of Novikov's E 2-term. Duke Math. J. 44 (1977), 433447.CrossRefGoogle Scholar
(19)Miller, H. R., Ravenel, D. C. and Wilson, W. S.Novikov's Ext2 and the non-triviality of the gamma family. Bull. Amer. Math. Soc. 81 (1975), 10731075.CrossRefGoogle Scholar
(20)Miller, H. R., Ravenel, D. C. and Wilson, W. S.Periodic phenomena in the Adams-Novikov spectral sequence. Ann. of Math. (To appear.)Google Scholar
(21)Morava, J. Structure theorems for cobordism eomodules. (To appear.)Google Scholar
(22)Novikov, S. P.The methods of algebraic topology from the point of cobordism theories. Math. U.S.S.R.-Izvestia 1 (1967), 827913 (Izv. Akad. Nauk S.S.S.R., Seriia Mate-maticheskaia 31 (1967), 855951).Google Scholar
(23)Quillen, D.On the formal group laws of unoriented and complex cobordism. Bull. Amer. Math. Soc. 75 (1969), 12931298.CrossRefGoogle Scholar
(24)Ravenel, D. C.The structure of Morava stabilizer algebras. Inventiones Math. 37 (1976), 109120.CrossRefGoogle Scholar
(25)Ravenel, D. C.The cohomology of the Morava stabilizer algebras. Math. Zeit. 152 (1977), 287297.CrossRefGoogle Scholar
(26)Ravenel, D. C.The structure of BP*BP modulo an invariant prime ideal. Topology 15 (1976), 149153.CrossRefGoogle Scholar
(27)Serhe, J. P., Corps Locaux (Hermann, 1962).Google Scholar
(28)Serre, J. P. Local class field theory. In Algebraic Number Theory, ed. Cassels, J. W. S. and Fröhlich, A. (Academic Press, 1967).Google Scholar
(29)Shimada, N. and Yamanoshita, T.On the triviality of the mod p Hopf invariant. Japan J. Math. 31 (1961), 124.CrossRefGoogle Scholar
(30)Smith, L.On realizing complex cobordism modules. Amer. J. Math. 92 (1970), 793856.CrossRefGoogle Scholar
(31)Toda, H.p-primary components of homotopy groups: compositions and toric construc-tions. Memoirs Univ. of Kyoto 32 (1959), 297332.Google Scholar
(32)Toda, H.Extended p-th powers of complexes and applications to homotopy theory. Proc. Japan Acad. 44 (1968), 198203.Google Scholar
(33)Toda, H.An important relation in homotopy groups of spheres. Proc. Japan Acad. 43 (1967), 893942.Google Scholar
(34)Zahler, R.The Adams-Novikov spectral sequence for the spheres. Ann. of Math. 96 (1972), 480504.CrossRefGoogle Scholar