Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:34:06.699Z Has data issue: false hasContentIssue false

Multiplicative functions at consecutive integers. II

Published online by Cambridge University Press:  24 October 2008

Adolf Hildebrand
Affiliation:
Department of Mathematics, University of Illinois, Urbana, Illinois 61801, U.S.A.

Extract

The global behaviour of multiplicative arithmetic functions has been extensively studied and is now well understood for a large class of multiplicative functions. In particular, Halász [5] completely determined the asymptotic behaviour of the means

for multiplicative functions g satisfying |g| ≤ 1, and gave necessary and sufficient conditions for the existence of the ‘mean value’

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Elliott, P. D. T. A.. Probabilistic Number Theory I (Springer-Verlag, 1979).Google Scholar
[2]Erdös, P.. On the distribution function of additive functions. Ann. of Math. (2) 47 (1946), 120.CrossRefGoogle Scholar
[3]Erdös, P., Pomerance, C. and Sarközy, A.. On locally repeated values of arithmetic functions. III. Proc. Amer. Math. Soc. 101 (1987), 17.CrossRefGoogle Scholar
[4]Friedlander, J. and Iwaniec, H.. On Bombieri's asymptotic sieve. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978), 719756.Google Scholar
[5]Halász, G.. Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math. Acad. Sci. Hungar. 19 (1968), 365403.Google Scholar
[6]Halberstam, H. and Richert, H.-E.. Sieve Methods (Academic Press, 1974).Google Scholar
[7]Hildebrand, A.. Multiplicative functions at consecutive integers. Math. Proc. Cambridge Philos. Soc. 100 (1986), 229236.Google Scholar
[8]Hildebrand, A.. An Erdös–Wintner theorem for differences of additive functions. Trans. Amer. Math. Soc, (to appear).Google Scholar
[9]Iwaniec, H.. Sieving limits. In Séminaire de Théorie des Nombres, Paris 19791980 (Birkhäuser, 1981), pp. 151169.Google Scholar
[10]Kátai, I.. On a problem of P. Erdös. J. Number Theory 21 (1970), 16.Google Scholar
[11]Kátai, I.. Some problems in number theory. Studia Sci. Math. Hungar. 16 (1981), 289295.Google Scholar
[12]Kátai, I.. Multiplicative functions with regularity properties. II. Acta Math. Acad. Sci. Hungar. 43 (1984), 105130.Google Scholar
[13]Kuipers, L. and Niederreiter, H.. Uniform distribution of sequences (Wiley, 1974).Google Scholar
[14]Mauclaire, J.-L. and Murata, L.. On the regularity of arithmetic multiplicative functions. I. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 438440.Google Scholar
[15]Prachar, K.. Primzahlverteilung (Springer-Verlag, 1957).Google Scholar
[16]Wirsing, E.. A characterization of log n as an additive function. Sympos. Math. IV (1970), 4557.Google Scholar
[17]Wirsing, E.. Private communication (October 1986).Google Scholar