Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T21:13:11.407Z Has data issue: false hasContentIssue false

Most integers are not a sum of two palindromes

Published online by Cambridge University Press:  22 October 2024

DMITRII ZAKHAROV*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachsetts Ave, Cambridge, MA 02139, U.S.A. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

For $g \geqslant 2$, we show that the number of positive integers at most X which can be written as sum of two base g palindromes is at most ${X}/{\log^c X}$. This answers a question of Baxter, Cilleruelo and Luca.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Fix an integer $g \geqslant 2$ . Every positive integer $a \in \mathbb N$ has a base g representation, i.e. it can be uniquely written as

(1) \begin{equation}a = \overline{a_n a_{n-1} \ldots a_0} = \sum_{i=0}^n g^i a_i, \, \text{ where }a_i \in \{0, 1, \ldots, g-1\} \text{ and }a_n\neq 0.\end{equation}

A number $a \in \mathbb N$ with representation (1) is called a base g palindrome if $a_i = a_{n-i}$ holds for all $i=0, \ldots, n$ . Baxter, Cilleruelo and Luca [ Reference Cilleruelo, Luca and Baxter3 ] studied additive properties of the set of base g palindromes. Improving on a result of Banks [ Reference Banks2 ], they showed that every positive integer can be written as a sum of three palindromes, provided that $g\geqslant 5$ . The cases $g=2, 3, 4$ were later covered by Rajasekaran, Shallit and Smith [ Reference Rajasekaran, Shallit and Smith4 , Reference Rajasekaran, Shallit and Smith5 ]. Baxter, Cilleruelo and Luca also showed that the number of integers at most X which are sums of two palindromes is at least $X e^{-c_1\sqrt{\log X}}$ and at most $c_2 X$ , for some constants $c_1 \gt 0$ and $c_2 \lt 1$ depending on g, and asked whether a positive fraction of integers can be written as a sum of two base g palindromes. This was later reiterated by Green in his list of open problems as Problem 95. We answer this question negatively:

Theorem 1. For any integer $g \geqslant 2$ there exists a constant $c \gt 0$ such that

\begin{align*} \# \{ n \lt X:\, n \text{ is a sum of two base }g\text{ palindromes} \} \leqslant \frac{X}{\log^{c} X}, \end{align*}

for all large enough X.

It is an interesting open problem to close the gap between this result and the lower bound of Baxter, Cilleruelo and Luca [ Reference Cilleruelo, Luca and Baxter3 ]. We now proceed to the proof.

For $n \geqslant 1$ , let $P_n$ be the set of base g palindromes with exactly n digits and $P = \bigcup_{n\geqslant 1}P_n$ be the set of all base g palindromes. Note that

\begin{align*}|P_n| = \begin{cases} g^{n/2}-g^{n/2-1}, \, n\text{ is even,}\\ g^{(n+1)/2}-g^{(n-1)/2}, \,n\text{ is odd.}\end{cases}\end{align*}

For an integer $N \geqslant 1$ , we write $[N] = \{0, 1, \ldots, N-1\}$ . For $A, B \subset \mathbb Z$ we let $A+B = \{a+b, \,a\in A, \,b \in B\}$ denote the sumset of A and B. Let $k \geqslant 1$ be sufficiently large and let $X = g^k$ , it is enough to consider numbers X of this form only. With this notation, our goal is to upper bound the size of the intersection $(P + P) \cap [X]$ . We have

\begin{align*}(P + P) \cap [X] = \bigcup_{k \geqslant n \geqslant m \geqslant 1} (P_n + P_m) \cap [X]\end{align*}

and so we can estimate

(2) \begin{equation}|(P+P) \cap [X]| \leqslant \sum_{k \geqslant n \geqslant m \geqslant 1} |P_n + P_m|.\end{equation}

We have $|P_n| \leqslant g^{(n+1)/2}$ , $|P_{m}| \leqslant g^{ (m+1)/2}$ so using the trivial bound $|P_n+P_m| \leqslant |P_n| |P_m|$ we can immediately get rid of the terms where m is small:

(3) \begin{align}\sum_{\substack{k \geqslant n \geqslant m \geqslant 1\\ m \leqslant k-\gamma \log k}} |P_n + P_m| & \leqslant \sum_{k \geqslant n \geqslant 1} |P_n| \cdot \sum_{m \leqslant k-\gamma \log k} |P_m|\\ & \leqslant \sum_{k \geqslant n \geqslant 1} |P_n| \cdot 4 g^{(k+1)/2 -\gamma \log k/2}\nonumber\\& \leqslant 16 g^{k+1 - \gamma \log k /2} \lesssim \frac{X}{k^{\gamma \log g/2}} \sim \frac{X}{(\log X)^{\gamma \log g/2}},\nonumber\end{align}

where $\gamma \gt 0$ is a small constant which we will choose. Now we focus on a particular sumset $P_n + P_m$ from the remaining range. Write $m = n-d$ for some $d \geqslant 0$ .

For an integer $a = \overline{a_n \ldots a_0} $ let $r(a) = \overline{a_0 \ldots a_n}$ be the integer with the reversed digit order in base g (we allow some leading zeros here). For $d\geqslant 0$ define

\begin{align*}a = \overline{1 \underbrace{0\ldots 0}_{d}1 }, \, b = \overline{0 \underbrace{0\ldots 0}_{d}0}, \,a' = \overline{0 \underbrace{\ell \ldots \ell}_{d} 0}, \, b' = \overline{\underbrace{0 \ldots 0}_{d} 11},\end{align*}

where we denoted $\ell = g-1$ . These strings are designed to satisfy the following:

(4) \begin{equation}a + b = a' + b' \,\text{ and }\, g^{d} r(a) + r(b) = g^{d} r(a') + r(b').\end{equation}

Indeed, note that

\begin{align*}a' = \sum_{i=1}^d g^{i}\ell = g^{d+1}-g = (g^{d+1}+1) + 0 - (g+1) = a+b-b'\end{align*}

and

\begin{align*}g^d r(a') = g^d a' = g^{2d+1}-g^{d+1} = g^{d}(g^{d+1}+1) + 0 - (g^{d+1}+g^d) = g^d r(a) + r(b) - r(b').\end{align*}

We claim that the fact that (4) holds for some a, b, a , b forces the sumset $P_n + P_{n-d}$ to be small. Roughly speaking, whenever palindromes $p \in P_n$ and $q \in P_{n-d}$ contain strings a and b on the corresponding positions, we can swap a with a and b with b to obtain a new pair of palindromes $p' \in P_n$ and $q' \in P_{n-d}$ with the same sum $p'+q'=p+q$ . A typical pair (p, q) will have $\gtrsim C^{-d} n$ disjoint substrings (a, b) and so we can do the swapping in $\gtrsim \exp(C^{-d} n)$ different ways. So a typical sum $p+q \in P_n + P_{n-d}$ has lots of representations and this means that the sumset has to be small.

Denote $t = [{n}/{3(d+2)}]$ . For $p = \overline{p_0 p_1 \ldots p_1 p_0} \in P_n$ and $q = \overline{q_0 q_1 \ldots q_1 q_0} \in P_{n-d}$ let S(p, q) denote the number of indices $1 \leqslant j \leqslant t$ such that

(5) \begin{equation}\overline{p_{(d+2) j + d+1} p_{(d+2)j+d} \ldots p_{(d+2)j+1} p_{(d+2)j}} = a,\end{equation}
(6) \begin{equation}\overline{q_{(d+2) j + d+1} q_{(d+2)j+d} \ldots q_{(d+2)j+1} q_{(d+2)j}} = b,\end{equation}

i.e. the segments of digits of p and q in the interval $[(d+2)j, (d+2)j +d+1]$ are precisely a and b.

Proposition 1. The number of pairs $(p, q) \in P_n \times P_{n-d}$ such that $S(p, q) \leqslant {t}/{2 g^{2d+4} }$ is at most $\exp\left( - {t}/{8 g^{2d+4} } \right) |P_n| |P_{n-d}|$ .

Proof. Draw (p, q) uniformly at random from $P_n \times P_{n-d}$ . Then S(p, q) is a sum of t i.i.d Bernoulli random variables with mean $g^{-2(d+2)}$ . So the expectation $\mathbb E_{p,q} S(p, q)$ is given by $\mu = t g^{-2(d+2)}$ and by Chernoff bound (see e.g. [ Reference Alon and Spencer1 , appendix A]),

\begin{align*} \Pr[S(p, q) \leqslant \mu/2] \leqslant \exp\left(- \mu / 8\right) = \exp\left( - \frac{t}{8 g^{2d+4} } \right). \end{align*}

Now we observe that for any $p=\overline{p_0 p_1 \ldots p_1 p_0} \in P_n$ , $q = \overline{q_0 q_1 \ldots q_1 q_0} \in P_{n-d}$ , the sum $s=p+q$ has at least $2^{S(p,q)}$ distinct representations $s = p'+q'$ for $(p', q') \in P_n \times P_{n-d}$ . Indeed, let $j_1 \lt \ldots \lt j_u$ be an arbitrary collection of indices such that (5) and (6) hold for $j=j_1, \ldots, j_u$ . Let p and q be obtained from p and q by replacing the a and b-segments on positions $j_1, \ldots, j_u$ by a and b and replacing r(a) and r(b)-segments on the symmetric positions by r(a ) and r(b ), respectively. Then we claim that $p' \in P_n$ , $q' \in P_{n-d}$ and $p'+q'=p+q$ . Indeed, more formally, we can write

\begin{align*}p' = p + \sum_{i=1}^u g^{(d+2) j_i} (a' - a) + g^{n-(d+2) j_i - d-1} (r(a') - r(a)),\end{align*}
\begin{align*}q' = q + \sum_{i=1}^u g^{(d+2) j_i} (b' - b) + g^{(n-d)-(d+2) j_i - d-1} (r(b') - r(b)),\end{align*}

and so (4) implies that $p+q=p'+q'$ . Since we can choose $j_1 \lt \cdots \lt j_u$ to be an arbitrary subset of S(p,q) indices, we get $2^{S(p, q)}$ different representations $p+q=p'+q'$ .

Using this and Proposition 1 we get

\begin{align*} |P_n + P_{n-d}| & \leqslant \# \left\{p+q \,|\, S(p, q) \geqslant \frac{t}{2g^{2d+4}}\right\} + \# \left\{p+q \,|\, S(p, q) \leqslant \frac{t}{2g^{2d+4}}\right\}\\& \leqslant 2^{- \frac{t}{2g^{2d+4}}} |P_n| |P_{n-d}| + \exp\left(- \frac{t}{8g^{2d+4}}\right) |P_n| |P_{n-d}|\\& \leqslant 2 \exp\left(- \frac{n}{30(d+2) g^{2d+4}}\right) |P_n| |P_{n-d}|.\end{align*}

Using this bound we can estimate the part of (2) which was not covered by (3):

\begin{align*}\sum_{k \geqslant n \geqslant m \geqslant k-\gamma \log k} |P_n + P_m| & \leqslant \sum_{k \geqslant n \geqslant k-\gamma \log k} \sum_{d = 0}^{\gamma \log k} |P_n + P_{n-d}|\\& \leqslant \sum_{k \geqslant n \geqslant k-\gamma \log k} \sum_{d = 0}^{\gamma \log k} 2 \exp\left(- \frac{n}{30(d+2) g^{2d+4}}\right) |P_n| |P_{n-d}|\\&\leqslant \sum_{k\geqslant n \geqslant k-\gamma \log k} 2 \exp\left( - \frac{n}{k^{3 \gamma \log g}} \right) g^{k+1}\end{align*}

so if we take, say, $\gamma = {1}/{4 \log g}$ then this expression is less than, say, $k^{-1} g^k \lesssim {X}/{\log X}$ provided that k is large enough. Combining this with (3) gives $|(P+P) \cap [X]| \leqslant {X}/{(\log X)^{0.1}}$ for large enough X (the proof actually gives $1/4-\varepsilon$ instead of $0.1$ here).

Footnotes

This research was supported by the Jane Street Graduate Fellowship.

References

Alon, N. and Spencer, J.H.. The Probabilistic Method (John Wiley & Sons, 2016).Google Scholar
Banks, W. D.. Every natural number is the sum of forty-nine palindromes. Integers. 16(A3, 9) (2016) i.e (2016).Google Scholar
Cilleruelo, J., Luca, and Baxter, L.. Every positive integer is a sum of three palindromes. Math. Comp. 87 (2018), 30233055.CrossRefGoogle Scholar
Rajasekaran, A., Shallit, J. and Smith, T.. Sums of palindromes: an approach via automata, (35th Symposium on Theoretical Aspects of Computer Science, 2018).Google Scholar
Rajasekaran, A., Shallit, J. and Smith, T.. Additive number theory via automata theory. Theory Comput. Syst. 64 (2020), 542567.CrossRefGoogle Scholar