Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T11:35:32.451Z Has data issue: false hasContentIssue false

Modulus of surface families and the radial stretch in the Heisenberg group

Published online by Cambridge University Press:  26 May 2016

IOANNIS D. PLATIS*
Affiliation:
Department of Mathematics and Applied Mathematics, University of Crete, GR 70013 Heraklion Crete, Greece. e-mail: [email protected]

Abstract

We develop a modulus method for surface families inside a domain in the Heisenberg group and we prove that the stretch map between two Heisenberg spherical rings is a minimiser for the mean distortion among the class of contact quasiconformal maps between these rings which satisfy certain boundary conditions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Astala, K., Iwaniec, T., Martin, G. J. and Onninen, J. Extremal mappings of finite distortion. Proc. Lon. Math. Soc. 3 (2005), 655702.Google Scholar
[2] Balogh, Z. M., Fässler, K. and Platis, I. D. Modulus method and radial stretch map in the Heisenberg group. Ann. Acad. Sci. Fenn. 38 (2013), 132.Google Scholar
[3] Balogh, Z. M., Fässler, K. and Platis, I. D. Modulus of curve families and extremality of spiral–stretch maps. J. Anal. Math. 113 (2011), 265291.Google Scholar
[4] Capogna, L., Danielli, D., Pauls, S. D. and Tyson, J. T. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. Progr. Math. 259 (Birkhuser Verlag, Basel, 2007).Google Scholar
[5] Dairbekov, N. S. On mappings of bounded distortion on the Heisenberg group. Sib. Math. Zh. 41 (1), (2000), 4959.Google Scholar
[6] Do Carmo, M. P. Differential geometry of curves and surfaces (Prentice-Hall, NJ, 1976).Google Scholar
[7] Fuglede, B. Extremal length and functional completion. Acta Math. 98 (1), 171219.Google Scholar
[8] Gardiner, F. and Lakic, N. Quasiconformal Teichmüller theory. Math. Surv. and Mon. 76 (AMS, 2000).Google Scholar
[9] Grötzsch, H. Über möglichst konforme Abbildungen von schlichten Bereichen. Ber. Math.-phys. Kl. Sachs. Akad. Wis. Leipsig. 84 (1932), 114120.Google Scholar
[10] Gutlyanskii, V. and Martio, O. Rotation estimates and spirals. Conf. Geom. Dyn. 5 (2001), 620.Google Scholar
[11] Heinonen, J. Calculus on Carnot groups. In: Fall school in Analysis (Jyväskylä, 1994), Report 68 (Univ. Jyväskylä, Jyväskylä, 1995), 1–31.Google Scholar
[12] Kirchheim, B. and Serra Cassano, F. Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group. Ann. Sc. Norm. Sup. Pisa CI. Sci. 5 (2004), 871896.Google Scholar
[13] Korányi, A. and Reimann, H. M. Foundations for the theory of quasiconformal mappings of the Heisenberg group. Adv. in Math. 111 (1995), 187.Google Scholar
[14] Korányi, A. and Reimann, H. M. Quasiconformal mappings on the Heisenberg group. Invent. Math. 80 (2) (1985), 309338.Google Scholar
[15] Martin, G. J. The Teichmüller problem for mean distortion. Ann. Acad. Sci. Fenn. Math. 34 (2009), 233247.Google Scholar
[16] Mostow, G. D. Strong rigidity in locally symmetric spaces. Ann. Math. Stud. 78 (Princeton University Press, Princeton, N.J., 1973).Google Scholar
[17] Pansu, P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. 129 (1989), 160.CrossRefGoogle Scholar
[18] Platis, I. D. Straight ruled surfaces in the Heisenberg group. J. Geom. 105 (2014), 119138.CrossRefGoogle Scholar
[19] Platis, I. D. The geometry of complex hyperbolic packs. Math. Proc. Cam. Phil. 147 (2009), 205234.Google Scholar
[20] Strebel, K. Extremal quasiconformal mappings. Res. Math. 10 (1986), 168210.Google Scholar
[21] Strebel, K. Quadratic differentials (Springer-Verlag, Berlin and New York, 1984).Google Scholar
[22] Teichmüller, O. Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 22 (1939), 197.Google Scholar
[23] Vasil'ev, A. Moduli of families of curves for conformal and quasiconformal mappings (Springer-Verlag, Berlin and New York, 2004).Google Scholar
[24] Vodop'yanov, S. K. Monotone functions and quasiconformal mappings on Carnot groups. Sib. Math. Zh. 37 (6) (1996), 12691295.Google Scholar