No CrossRef data available.
Article contents
The Möbius–Wall congruences for p-adic L-functions of CM elliptic curves
Published online by Cambridge University Press: 11 November 2013
Abstract
In this paper we prove, under a technical assumption, the so-called “Möbius–Wall” congruences between abelian p-adic L-functions of CM elliptic curves. These congruences are the analogue of those shown by Ritter and Weiss for the Tate motive, and offer strong evidences in favor of the existence of non-abelian p-adic L-functions for CM elliptic curves.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 156 , Issue 1 , January 2014 , pp. 183 - 192
- Copyright
- Copyright © Cambridge Philosophical Society 2013
References
REFERENCES
[1]Bouganis, Th.. Non-abelian congruences between special values of L-fucntions of elliptic curves; the CM case. Int. J. Number Theory 7, No. 7 (2011), 1883–1934.CrossRefGoogle Scholar
[2]Bouganis, Th.. Non abelian p-adic L-functions and Eisenstein series of unitary groups; the CM-method, preprint. arXiv:1107.1377v2[math.NT].Google Scholar
[3]Coates, J., Fukaya, T., Kato, K., Sujatha, R. and Venjakob, O.. The GL 2-main conjecture for elliptic curves without complex multiplication. Publ. Math. Inst. Hautes. Études Sci. 101 (2005), no. 1, 163–208.CrossRefGoogle Scholar
[4]Fukaya, T. and Kato, K.. A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory. Proceedings of the St. Petersburg Mathematical Society, vol XII (Providence RI). Amer. Math. Soc. Transl. Ser. 2 vol 219 (2006).Google Scholar
[5]Hara, T.. Iwasawa theory of totally real fields for certain non-commutative p-extensions. J. Number Theory 130 (4), (2010), 1068–1097.CrossRefGoogle Scholar
[6]Harris, M., Li, J.-S. and Skinner, C.. p-adic L-functions for unitary Shimura varieties, I: Construction of the Eisenstein measure. Documenta Math. Extra Volume: John H. Coates' Sixtieth Birthday (2006), 393–464.CrossRefGoogle Scholar
[7]Kakde, M.. Proof of the main conjecture of non-commutative Iwasawa theory of totally real number fields in certain cases. J. Algebraic Geometry 20 (2011), 631–683CrossRefGoogle Scholar
[8]Kakde, M.. Proof of the main conjecture of non-commutative Iwasawa theory of totally real number fields. Invent. Math. DOI 10.1007/s00222-012-0436-x, (2012).Google Scholar
[9]Kato, K.. Iwasawa theory of totally real fields for Galois extensions of Heisenberg type, preprint.Google Scholar
[10]Ritter, J. and Weiss, A.. Congruences between abelian pseudomeasures. Math. Res. Lett. 15 (2008), 715–725.CrossRefGoogle Scholar
[11]Ritter, J. and Weiss, A.. Congruences between abelian pseudomeasures II, preprint. arXiv:1001.2091v1[math.NT].Google Scholar
[12]Venjakob, O.. On the work of Ritter and Weiss in Comparison with Kakde's Approach. Noncommutative Iwasawa Main Conjectures over Totally Real Fields, ed. Coates, J.et al. Springer Proceedings in Mathematics and Statistics, 29 (Springer 2013).Google Scholar