Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T20:20:30.209Z Has data issue: false hasContentIssue false

Minimal representation-infinite artin algebras

Published online by Cambridge University Press:  24 October 2008

Andrzej Skowroński
Affiliation:
Institute of Mathematics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Extract

Let A be an artin algebra over a commutative artin ring R, mod A be the category of finitely generated right A-modules, and rad (modA) be the infinite power of the Jacobson radical rad(modA) of modA. Recall that A is said to be representation-finite if mod A admits only finitely many non-isomorphic indecomposable modules. It is known that A is representation-finite if and only if rad (mod A) = 0. Moreover, from the validity of the First Brauer–Thrall Conjecture [26, 2] we know that A is representation-finite if and only if there is a common bound on the length of indecomposable modules in mod A.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Assem, I. and Coelho, F.. Gluings of tilted algebras (to appear).Google Scholar
[2]Auslander, M.. Representation theory of artin algebras II. Comm. Algebra 1 (1974), 269310.CrossRefGoogle Scholar
[3]Bautista, R.. On algebras of strongly unbounded representation type. Comment. Math. Helv. 60 (1985), 392399.CrossRefGoogle Scholar
[4]Bretscher, O. and Todorov, G.. On a theorem of Nazarova and Roiter. In Representation Theory I. Finite Dimensional Algebras. Lecture Notes in Math. 1177 (Springer-Verlag, 1980), pp. 5054.CrossRefGoogle Scholar
[5]Crawley-Boevey, W. W.. On tame algebras and bocses. Proc. London Math. Soc. 56 (1988), 451483.CrossRefGoogle Scholar
[6]Crawley-Boevey, W. W.. Regular modules for tame hereditary algebras. Proc. London Math. Soc. 62 (1991), 490508.CrossRefGoogle Scholar
[7]Crawley-Boevey, W. W.. Tame algebras and generic modules. Proc. London Math. Soc. 63 (1991), 241265.CrossRefGoogle Scholar
[8]Crawley-Boevey, W. W.. Modules of finite length over their endomorphism rings. In Representations of Algebras and Related Topics. London Math. Soc. Lecture Note Series 168 (Cambridge Univ. Press, 1992), pp. 127184.CrossRefGoogle Scholar
[9]Dlab, V. and Ringel, C. M.. On algebras of finite representation type. J. Algebra 33 (1975) 306394.CrossRefGoogle Scholar
[10]Dlab, V. and Ringel, C. M.. Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976).Google Scholar
[11]Dlab, V. and Ringel, C. M.. The representations of tame hereditary algebras. In Representation Theory of Algebras. Pure and Applied Mathematics 37 (Marcel Dekker, 1978), pp. 329353.Google Scholar
[12]Fischbacher, V.. A new proof of a theorem of Nazarova and Roiter. C.R. Acad. Sc. Paris, t. 300, Serie I, no. 9 (1985), 259262.Google Scholar
[13]Happel, D. and Liu, S.. Module categories without short cycles are of finite type. Proc. Amer. Math. Soc. (1994) (to appear).CrossRefGoogle Scholar
[14]Happel, D., Preiser, V. and Ringel, C. M.. Vinberg's characterization of Dynkin diagrams using subadditive functions with application to D Tr-periodic modules. In Representation Theory II, Lecture Notes in Math. 832 (Springer-Verlag, 1980), pp. 280294.CrossRefGoogle Scholar
[15]Happel, D. and Unger, L.. Factors of wild concealed algebras. Math. Z. 201 (1989), 474483.CrossRefGoogle Scholar
[16]Harada, M. and Sai, Y.. On categories of indecomposable modules I. Osaka J. Math. 7 (1970), 323344.Google Scholar
[17]Igusa, K. and Todorov, G.. A characterization of finite Auslander–Reiten quivers. J. Algebra 89 (1984), 148177.CrossRefGoogle Scholar
[18]Liu, S.. Degrees of irreducible maps and the shapes of the Auslander–Reiten quivers. J. London Math. Soc. 45 (1992), 3254.CrossRefGoogle Scholar
[19]Liu, S.. Semi-stable components of an Auslander–Reiten quiver. J. London Math. Soc. 47 (1983), 405416.Google Scholar
[20]Nazarova, L. A. and Roiter, A. V.. Categorical matrix problems and the Brauer–Thrall conjecture. Preprint. Inst. Math. Acad. Sci. Kiev 1973, German transl. Mitt. Math. Sem. Giessen 115 (1975).Google Scholar
[21]Ringel, C. M.. Representation of K-species and bimodules. J. Algebra 41 (1976), 269302.CrossRefGoogle Scholar
[22]Ringel, C. M.. Finite dimensional hereditary algebras of wild representation type. Math. Z. 161 (1978), 236255.CrossRefGoogle Scholar
[23]Ringel, C. M.. Report on the Brauer–Thrall conjectures. In Representation Theory I, Lecture Notes in Math. 831 (Springer-Verlag, 1980), pp. 104136.CrossRefGoogle Scholar
[24]Ringel, C. M.. Tame algebras and integral quadratic forms. Lecture Notes in Math. 1099 (Springer, 1984).CrossRefGoogle Scholar
[25]Ringel, C. M.. The canonical algebras. In Topics in Algebra, Banach Center Publications, vol. 26, part 1 (Warsaw, 1990), pp. 407432.Google Scholar
[26]Roiter, A. V.. The unboundness of the dimension of the indecomposable representations of algebras that have infinite number of indecomposable representations. Izv. Acad. Nauk SSR 32 (1968), 12751282.Google Scholar
[27]Skowroński, A.. Regular Auslander–Reiten components containing directing modules. Proc. Amer. Math. Soc. (1994) (to appear).CrossRefGoogle Scholar
[28]Skowroński, A.. Generalized standard Auslander–Reiten components. J. Math. Soc. Japan (1994) (to appear).CrossRefGoogle Scholar
[29]Skowroński, A.. Generalized standard Auslander–Reiten components without oriented cycles. Osaka J. Math. 30 (1993), 515527.Google Scholar
[30]Skowroński, A.. Cycles in module categories. In Representations of Algebras and Related Topics, Proc. CMS Annual Seminar/NATO Advanced Research Workshop (Ottawa, 1992) Kluwer Acad. Publ. (1994) (to appear).Google Scholar
[31]Strauss, H.. On the perpendicular category of a partial tilting module. J. Algebra 144 (1991), 4366.CrossRefGoogle Scholar
[32]Zhang, Y.. The structure of stable components. Canad. J. Math. 43 (1991), 652672.CrossRefGoogle Scholar