Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T04:20:31.075Z Has data issue: false hasContentIssue false

Metric properties of the Julia set of some meromorphic functions with an asymptotic value eventually mapped onto a pole

Published online by Cambridge University Press:  22 June 2005

BARTŁOMIEJ SKORULSKI
Affiliation:
Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland. e-mail: [email protected]

Abstract

We study the dynamics of non-entire transcendental meromorphic functions with a finite asymptotic value mapped after some iterations onto a pole. This situation does not appear in the case of rational or entire functions. We consider the family of non-entire functions \[ f(z)=\frac{a\exp(z^p)+b\exp(-z^p)}{c\exp(z^p)+d\exp(-z^p)} \] with this property, i.e. there exists a finite asymptotic value $\xi$ and a positive natural number $q$ such that $f^q(\xi)\,{=}\,\infty$, where $p\,{\geq}\,1$, $a,b,c,d\,{\in}\,\mathbb{C}$. We show that the Hausdorff dimension of the set of points in the Julia set with bounded trajectory is strictly greater than one. We then impose two conditions on functions from this family. If the first condition holds, then the Lebesgue measure of the Julia set is zero, but the Hausdorff dimension is equal to two. On the other hand, if a function $f$ satisfies the second condition, then the Lebesgue measure of the Julia set is positive. Finally, we describe the measurable dynamics of these functions and prove that there does not exist an invariant measure on the Julia set absolutely continuous with respect to the Lebesgue measure and finite on compact subsets of $\mathbb{C}$.

Type
Research Article
Copyright
2005 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)