No CrossRef data available.
Article contents
Measure theory over boolean toposes
Published online by Cambridge University Press: 30 August 2016
Abstract
In this paper we develop a notion of measure theory over boolean toposes reminiscent of the theory of von Neumann algebras. This is part of a larger project to study relations between topos theory and noncommutative geometry. The main result is a topos theoretic version of the modular time evolution of von Neumann algebras which take the form of a canonical $\mathbb{R}^{>0}$-principal bundle over any integrable locally separated boolean topos.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 163 , Issue 1 , July 2017 , pp. 1 - 21
- Copyright
- Copyright © Cambridge Philosophical Society 2016
References
REFERENCES
[1]
Ghez, P., Lima, R. and Roberts, J. E
W*-categories. Pacific J. Math. 120
(1) (1985), 79–109.Google Scholar
[2]
Henry, S. Des topos à la géométrie non commutative par l'étude des espaces de Hilbert internes. PhD thesis. Université Paris 7 (2014).Google Scholar
[3]
Henry, S. Toward a non-commutative Gelfand duality: Boolean locally separated toposes and monoidal monotone complete C*-categories. arXiv preprint arXiv:1501.07045 (2015).Google Scholar
[4]
Jackson, M. A sheaf theoretic approach to measure theory. PhD thesis. University of Pittsburgh (2006).Google Scholar
[6]
Johnstone, P. T.
Sketches of an Elephant: a Topos Theory Compendium (Clarendon Press, 2002).Google Scholar
[7]
MacLane, S. and Moerdijk, I.
Sheaves in Geometry and Logic: a First Introduction to Topos Theory (Springer, 1992).Google Scholar
[8]
Moerdijk, I. and Vermeulen, J. J. C.
Proper Maps of Toposes, vol. 705 (AMS Bookstore, 2000).Google Scholar
[9]
Saitô, K. and Wright, J. D. M. Monotone complete C*-algebras and generic dynamics. Proc. London Math. Soc. (2013), page pds 084.Google Scholar
[12]
Vickers, S.
A localic theory of lower and upper integrals. Mathematical Logic Quarterly. 54
(1) (2008), 109–123.Google Scholar