Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T10:34:51.689Z Has data issue: false hasContentIssue false

A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces

Published online by Cambridge University Press:  19 October 2011

STÉPHANE GAUBERT
Affiliation:
INRIA Saclay & Centre de Mathématiques Appliquées (CMAP), École Polytechnique, 91128 Palaiseau, France. e-mail: [email protected]
GUILLAUME VIGERAL
Affiliation:
Université Paris-Dauphine, CEREMADE, Place du Maréchal De Lattre de Tassigny, 75775 Paris cedex 16, France. e-mail: [email protected]

Abstract

We establish a maximin characterisation of the linear escape rate of the orbits of a non-expansive mapping on a complete (hemi-)metric space, under a mild form of Busemann's non-positive curvature condition (we require a distinguished family of geodesics with a common origin to satisfy a convexity inequality). This characterisation, which involves horofunctions, generalises the Collatz–Wielandt characterisation of the spectral radius of a non-negative matrix. It yields as corollaries a theorem of Kohlberg and Neyman (1981), concerning non-expansive maps in Banach spaces, a variant of a Denjoy–Wolff type theorem of Karlsson (2001), together with a refinement of a theorem of Gunawardena and Walsh (2003), concerning order-preserving positively homogeneous self-maps of symmetric cones. An application to zero-sum stochastic games is also given.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AB06]Aliprantis, C. D. and Border, K. C.Infinite Dimensional Analysis (Springer, 2006).Google Scholar
[ACS00]Andruchow, E., Corach, G. and Stojanoff, D.Geometrical significance of Löwner-Heinz inequality. Proc. Amer. Math. Soc. 128 (4) (2000), 10311037.Google Scholar
[AGLN06]Akian, M., Gaubert, S., Lemmens, B. and Nussbaum, R.Iteration of order preserving subhomogeneous maps on a cone. Math. Proc. Camb. Phil. Soc. 140 (01) (2006), 157176.Google Scholar
[AGW09]Akian, M., Gaubert, S. and Walsh, C.The max-plus Martin boundary. Doc. Math. 14 (2009), 195240.CrossRefGoogle Scholar
[Bal95]Ballmann, W.Lecture on Spaces of Nonpositive Curvature (Birkhäuser, 1995).CrossRefGoogle Scholar
[Bea97]Beardon, A. F.The dynamics of contractions. Ergodic Theory Dynam. Systems 17 (6) (1997), 12571266.Google Scholar
[BGS85]Ballmann, W., Gromov, M. and Schroeder, V.Manifolds of nonpositive curvature, volume 61 of Progr. Math. (Birkhäuser Boston Inc., 1985).Google Scholar
[Bha03]Bhatia, R.On the exponential metric increasing property. Linear Algebra Appl. 375 (2003), 211220.Google Scholar
[BNS03]Burbanks, A. D., Nussbaum, R. D. and Sparrow, C. T.Extension of order-preserving maps on a cone. Proc. Roy. Soc. Edinburgh Sect. A 133 (1) (2003), 3559.CrossRefGoogle Scholar
[Bou95]Bougerol, PH.Almost sure stabilizability and Riccati's equation of linear systems with random parameters. SIAM J. Control Optim. 33 (3) (1995), 702717.CrossRefGoogle Scholar
[Bow08]Bowen, R.Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, volume 470 of Lecture Notes in Mathematics. (Springer-Verlag, revised edition, 2008).CrossRefGoogle Scholar
[Den26]Denjoy, A.Sur l'itération des fonctions analytiques. C.R. Acad. Sci. Paris 182 (1926), 255257.Google Scholar
[FF04]Friedland, S. and Freitas, P. J.p-metrics on GL(m, )/Un and their Busemann compactifications. Linear Algebra Appl. 376 (2004), 118.CrossRefGoogle Scholar
[FK94]Faraut, J. and Korányi, A.Analysis on symmetric cones. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, 1994).CrossRefGoogle Scholar
[Fun29]Funk, P.Über Geometrien, bei denen die Geraden die Kürzesten sind. Math. Ann. 101 (1) (1929), 226237.CrossRefGoogle Scholar
[GG04]Gaubert, S. and Gunawardena, J.The Perron–Frobenius theorem for homogeneous, monotone functions. Trans. Amer. Math. Soc. 356 (12) (2004), 49314950.Google Scholar
[GK95]Gunawardena, J. and Keane, M. On the existence of cycle times for some nonexpansive maps. Technical report, Citeseer (1995).Google Scholar
[Gro81]Gromov, M. Hyperbolic manifolds, groups and actions. In Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), volume 97 of Ann. of Math. Stud., pages 183–213. (Princeton Univ. Press, 1981).Google Scholar
[Gun03]Gunawardena, J.From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293 (1) (2003), 141167.CrossRefGoogle Scholar
[GW03]Gunawardena, J. and Walsh, C.Iterates of maps which are non-expansive in Hilbert's projective metric. Kybernetika (Prague), 39 (2) (2003), 193204. Special issue on max-plus algebras (Prague, 2001).Google Scholar
[IM07]Ishii, H. and Mitake, H.Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56 (5) (2007), 21592183.Google Scholar
[Kar01]Karlsson, A.Non-expanding maps and Busemann functions. Ergodic Theory Dynam. Systems 21 (5) (2001), 14471457.Google Scholar
[KMN06]Karlsson, A., Metz, V. and Noskov, G. A. Horoballs in simplices and Minkowski spaces. Int. J. Math. Math. Sci. pages Art. ID 23656, 20 (2006).Google Scholar
[KN81]Kohlberg, E. and Neyman, A.Asymptotic behavior of nonexpansive mappings in normed linear spaces. Israel J. Math. 38 (4) (1981), 269275.CrossRefGoogle Scholar
[Lin07]Lins, B.A Denjoy–Wolff theorem for Hilbert metric nonexpansive maps on polyhedral domains. Math. Proc. Camb. Phil. Soc. 143 (01) (2007), 157164.Google Scholar
[Lin09]Lins, B.Asymptotic behavior of nonexpansive mappings in finite dimensional normed spaces. Proc. Amer. Math. Soc. 137 (7) (2009), 23872392.Google Scholar
[LL07a]Lawson, J. and Lim, Y.A Birkhoff contraction formula with applications to Riccati equations. SIAM J. Control Optim. 46 (3) (2007), 930951.CrossRefGoogle Scholar
[LL07b]Lawson, J. and Lim, Y.Metric convexity of symmetric cones. Osaka J. Math. 44 (4) (2007), 795816.Google Scholar
[LL08]Lee, H. and Lim, Y.Invariant metrics, contractions and nonlinear matrix equations. Nonlinearity 28 (2008), 857878.CrossRefGoogle Scholar
[LS05]Lemmens, B. and Scheutzow, M.On the dynamics of sup-norm nonexpansive maps. Ergodic Theory Dynam. Systems 25 (3) (2005), 861871.Google Scholar
[LW94]Liverani, C. and Wojtkowski, M. P.Generalization of the Hilbert metric to the space of positive definite matrices. Pacific J. Math. 166 (2) (1994), 339355.Google Scholar
[Mos55]Mostow, G. D.Some new decomposition theorems for semisimple groups. Memoirs Amer. Math. Soc. 14 (1955), 3154.Google Scholar
[MPN02]Mallet–Paret, J. and Nussbaum, R.Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin. Dyn. Syst. 8 (3) (2002), 519562.Google Scholar
[MSZ94]Mertens, J.-F., Sorin, S. and Zamir, S. Repeated games. core reprint dps 9420, 9421 and 9422. Center for Operation Research and Econometrics, Universite Catholique De Louvain, Belgium (1994).Google Scholar
[Ney03]Neyman, A. Stochastic games and nonexpansive maps. In Stochastic games and applications (Stony Brook, NY, 1999), volume 570 of NATO Sci. Ser. C Math. Phys. Sci., pages 397415 (Kluwer Academic Publisher, 2003).CrossRefGoogle Scholar
[Now03]Nowak, A. S. Zero-sum stochastic games with Borel state spaces. In Stochastic games and applications (Stony Brook, NY, 1999), volume 570 of NATO Sci. Ser. C Math. Phys. Sci., pages 7791 (Kluwer Academic Publisher, 2003).Google Scholar
[NS04]Neyman, A. and Sorin, S.Stochastic Games and Applications (Kluwer Academic Publishers, 2003).Google Scholar
[Nus86]Nussbaum, R. D.Convexity and log convexity for the spectral radius. Linear Algebra Appl. 73 (1986), 59122.CrossRefGoogle Scholar
[Nus88]Nussbaum, R. D.Hilbert's projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc. 75 (391) (1988), iv+137.Google Scholar
[Nus94]Nussbaum, R. D.Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations. Differential and Integral Equations 7 (6) (1994), 16491707.CrossRefGoogle Scholar
[Nus07]Nussbaum, R. D.Fixed point theorems and Denjoy–Wolff theorems for Hilbert's projective metric in infinite dimensions. Topol. Methods Nonlinear Anal. 29 (2) (2007), 199249.Google Scholar
[NW04]Nussbaum, R. D. and Walsh, C.A metric inequality for the Thompson and Hilbert geometries. J. Inequalities Pure Appl. Math. 5 (3) (2004).Google Scholar
[Pap05]Papadopoulos, A.Metric spaces, convexity and nonpositive curvature (European Mathematical Society, 2005).Google Scholar
[Paz71]Pazy, A.Asymptotic behavior of contractions in Hilbert space. Israel J. Math. 9 (2) (1971), 235240.Google Scholar
[PT09]Papadopoulos, A. and Troyanov, M.Weak Finsler structures and the Funk weak metric. Math. Proc. Camb. Phil. Soc. 147 (2) (2009), 419437.CrossRefGoogle Scholar
[Rei73]Reich, S.Asymptotic behavior of contractions in Banach spaces. J. Math. Anal. Appl. 44 (1973), 5770.CrossRefGoogle Scholar
[Rie02]Rieffel, M. A.Group C*-algebras as compact quantum metric spaces. Doc. Math. 7 (2002), 605651.Google Scholar
[RS01]Rosenberg, D. and Sorin, S.An operator approach to zero-sum repeated games. Israel J. Math. 121 (1) (2001), 221246.Google Scholar
[RS05]Reich, S. and Shoikhet, D.Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces (Imperial College Press, 2005).Google Scholar
[Sha53]Shapley, L. S.Stochastic games. Proceedings of the National Academy of Sciences of the United States of America 39 (10) (1953), 1095.Google Scholar
[Wal07]Walsh, C.The horofunction boundary of finite-dimensional normed spaces. Math. Proc. Camb. Phil. Soc. 142 (3) (2007), 497507.Google Scholar
[Wal08]Walsh, C.The horofunction boundary of the Hilbert geometry. Adv. Geom. 8 (4) (2008), 503529.CrossRefGoogle Scholar
[Wol26a]Wolff, J.Sur l'itération des fonctions bornées. C.R. Acad. Sci. Paris 182 (1926), 200201.Google Scholar
[Wol26b]Wolff, J.Sur une généralisation d'un théorème de Schwarz. C.R. Acad. Sci. Paris 182–183 (1926), 918920, 500–502.Google Scholar