Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T13:55:34.790Z Has data issue: false hasContentIssue false

Lorentzian manifolds with no null conjugate points

Published online by Cambridge University Press:  07 September 2004

MANUEL GUTIÉRREZ
Affiliation:
Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071-Málaga, Spain. e-mail: [email protected]@eresmas.com
FRANCISCO J. PALOMO
Affiliation:
Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071-Málaga, Spain. e-mail: [email protected]@eresmas.com Current address: Departamento de Matemáticas Aplicada, Universidad de Málaga, 29071-Málaga, Spain.
ALFONSO ROMERO
Affiliation:
Departamento de Geometría y Topología, Universidad de Granada, 18071-Granada, Spain. e-mail: [email protected]

Abstract

An integral inequality for a compact Lorentzian manifold which admits a timelike conformal vector field and has no conjugate points along its null geodesics is given. Moreover, equality holds if and only if the manifold has nonpositive constant sectional curvature. The inequality can be improved if the timelike vector field is assumed to be Killing and, in this case, the equality characterizes (up to a finite covering) flat Lorentzian $n(\geq3)$-dimensional tori. As an indirect application of our technique, it is proved that a Lorentzian $2-$torus with no conjugate points along its timelike geodesics and admitting a timelike Killing vector field must be flat.

Type
Research Article
Copyright
2004 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)