Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T21:19:09.810Z Has data issue: false hasContentIssue false

Lifting results for sequences in Banach spaces

Published online by Cambridge University Press:  24 October 2008

M. Gonzalez
Affiliation:
University of Santander, Spain
V. M. Onieva
Affiliation:
University of Zaragoza, Spain

Extract

Several important classes of Banach spaces are characterized by means of convergence properties of sequences. For example, if X is a Banach space, then X belongs to the class Nl1 of spaces without copies of l1, the class R of reflexive spaces or the class F of finite-dimensional spaces if and only if each bounded sequence has respectively a weakly Cauchy (w-Cauchy), weakly convergent (w-convergent) or convergent subsequence. Similarly X is in the class WSC of weakly sequentially complete spaces, or the class SCH of spaces with the Schur property if and only if each w-Cauchy sequence is w-convergent, or convergent, respectively; note that X ∈ SCH if and only if each w-convergent sequence of X is convergent (see [12], p. 47).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alvarez, T., Gonzalez, M. and Onieva, V. M.. Totally incomparable Banach spaces and three-space Banach space ideals. Math. Nachr. 131 (1987), 8388.CrossRefGoogle Scholar
[2]Diestel, J.. Sequences and Series in Banach Spaces (Springer-Verlag, 1984).CrossRefGoogle Scholar
[3]Dor, L.. On sequences spanning a complex l1 space, Proc. Amer. Math. Soc. 47 (1975), 515516.Google Scholar
[4]Dunford, N. and Schwartz, J.. Linear Operators, vol. 1 (Interscience, 1958).Google Scholar
[5]Hagler, J. and Johnson, W. B.. On Banach spaces whose dual balls are not weak* sequentially compact. Israel J. Math. 28 (1977), 325330.CrossRefGoogle Scholar
[6]Johnson, W. B. and Rosenthal, H. P.. On w*-basic sequences and their applications to the study of Banach spaces. Studia Math. 43 (1972), 7792.CrossRefGoogle Scholar
[7]Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces I (Springer Verlag, 1977).CrossRefGoogle Scholar
[8]Lohman, R. H.. A note on Banach spaces containing l1. Canad. Math. Bull. 19 (1976), 365367.CrossRefGoogle Scholar
[9]McWillians, R. D.. On the w*-sequential closure of subspaces of Banach spaces. Portugal Math. 22 (1963), 209214.Google Scholar
[10]Onieva, V. M.. Notes on Banach space ideals. Math. Nachr. 126 (1986), 2733.CrossRefGoogle Scholar
[11]Pelczynski, A.. On Banach spaces containing L 1(μ). Studia Math. 30 (1968), 231246.CrossRefGoogle Scholar
[12]Pietsch, A.. Operator Ideals (North-Holland, 1980).Google Scholar
[13]Räbiger, F.. Beiträge zur Strukturtheorie der Grothendieck-Räume. Mathematisch naturwissenschaftliche Schriften der Heidelberger Akademie der Wissenschaften (1985).CrossRefGoogle Scholar
[14]Räbiger, F.. Some structure theoretical characterizations of Grothendieck spaces. In Semesterbericht Funktionalanalysis Tübingen (Wintersemester 1984/1985), pp. 167175.Google Scholar
[15]Rosenthal, H.. A characterization of Banach spaces containing l 1. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 24112413.CrossRefGoogle Scholar